New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfcxfr | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 | ⊢ A = B |
nfcxfr.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfcxfr | ⊢ ℲxA |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfr.2 | . 2 ⊢ ℲxB | |
2 | nfceqi.1 | . . 3 ⊢ A = B | |
3 | 2 | nfceqi 2486 | . 2 ⊢ (ℲxA ↔ ℲxB) |
4 | 1, 3 | mpbir 200 | 1 ⊢ ℲxA |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: nfrab1 2792 nfrab 2793 nfnin 3229 nfcompl 3230 nfin 3231 nfun 3232 nfdif 3233 nfsymdif 3234 nfpw 3734 nfpr 3774 nfsn 3785 nfuni 3898 nfint 3937 nfiun 3996 nfiin 3997 nfiu1 3998 nfii1 3999 nfopk 4069 nfiota1 4342 nfop 4605 nfopab 4628 nfopab1 4629 nfopab2 4630 nfxp 4811 nfco 4883 nfcnv 4892 nfres 4937 nfima 4954 nfrn 4964 nfdm 4965 nffv 5335 nfoprab1 5547 nfoprab2 5548 nfoprab3 5549 nfoprab 5550 ov3 5600 nfmpt 5672 nfmpt1 5673 nfmpt21 5674 nfmpt22 5675 nfmpt2 5676 fvmptss 5706 ov2gf 5712 fvmptf 5723 |
Copyright terms: Public domain | W3C validator |