New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfcr | GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcr | ⊢ (ℲxA → Ⅎx y ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2479 | . 2 ⊢ (ℲxA ↔ ∀yℲx y ∈ A) | |
2 | sp 1747 | . 2 ⊢ (∀yℲx y ∈ A → Ⅎx y ∈ A) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ (ℲxA → Ⅎx y ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nfc 2479 |
This theorem is referenced by: nfcrii 2483 nfcrd 2503 abidnf 3006 csbtt 3149 csbnestgf 3185 |
Copyright terms: Public domain | W3C validator |