NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfcrd GIF version

Theorem nfcrd 2503
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfeqd.1 (φxA)
Assertion
Ref Expression
nfcrd (φ → Ⅎx y A)
Distinct variable groups:   x,y   y,A
Allowed substitution hints:   φ(x,y)   A(x)

Proof of Theorem nfcrd
StepHypRef Expression
1 nfeqd.1 . 2 (φxA)
2 nfcr 2482 . 2 (xA → Ⅎx y A)
31, 2syl 15 1 (φ → Ⅎx y A)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1544   wcel 1710  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nfc 2479
This theorem is referenced by:  nfeqd  2504  nfeld  2505  dvelimdc  2510  nfcsbd  3170  nfifd  3686
  Copyright terms: Public domain W3C validator