New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abidnf | GIF version |
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
abidnf | ⊢ (ℲxA → {z ∣ ∀x z ∈ A} = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1747 | . . 3 ⊢ (∀x z ∈ A → z ∈ A) | |
2 | nfcr 2482 | . . . 4 ⊢ (ℲxA → Ⅎx z ∈ A) | |
3 | 2 | nfrd 1763 | . . 3 ⊢ (ℲxA → (z ∈ A → ∀x z ∈ A)) |
4 | 1, 3 | impbid2 195 | . 2 ⊢ (ℲxA → (∀x z ∈ A ↔ z ∈ A)) |
5 | 4 | abbi1dv 2470 | 1 ⊢ (ℲxA → {z ∣ ∀x z ∈ A} = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: dedhb 3007 nfopd 4606 nfimad 4955 nffvd 5336 |
Copyright terms: Public domain | W3C validator |