New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfeq1 GIF version

Theorem nfeq1 2498
 Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq1.1 xA
Assertion
Ref Expression
nfeq1 x A = B
Distinct variable group:   x,B
Allowed substitution hint:   A(x)

Proof of Theorem nfeq1
StepHypRef Expression
1 nfeq1.1 . 2 xA
2 nfcv 2489 . 2 xB
31, 2nfeq 2496 1 x A = B
 Colors of variables: wff setvar class Syntax hints:  Ⅎwnf 1544   = wceq 1642  Ⅎwnfc 2476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2478 This theorem is referenced by:  euabsn  3792  ov3  5599
 Copyright terms: Public domain W3C validator