New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfcv | GIF version |
Description: If x is disjoint from A, then x is not free in A. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcv | ⊢ ℲxA |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎx y ∈ A | |
2 | 1 | nfci 2480 | 1 ⊢ ℲxA |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-nf 1545 df-nfc 2479 |
This theorem is referenced by: nfcvd 2491 nfel 2498 nfeq1 2499 nfel1 2500 nfeq2 2501 nfel2 2502 nfcvf 2512 r2al 2652 r2ex 2653 nfra2 2669 r19.12 2728 ralcom 2772 rexcom 2773 raleq 2808 rexeq 2809 reueq1 2810 rmoeq1 2811 cbvral 2832 cbvrex 2833 rabeq 2854 cbvrabv 2859 vtoclg 2915 vtocl2g 2919 vtoclga 2921 vtocl2ga 2923 vtocl3ga 2925 spcimdv 2937 spcgv 2940 spcegv 2941 rspct 2949 rspc 2950 rspce 2951 rspc2 2961 ceqsexg 2971 elabgt 2983 elabf 2985 elabg 2987 elab3g 2992 elrab 2995 mob 3019 2rmorex 3041 nfsbc1v 3066 elrabsf 3085 sbcralt 3119 sbcralg 3121 sbcrexg 3122 sbcreug 3123 cbvcsbv 3142 csbexg 3147 csbconstg 3151 nfcsb1v 3169 csbnestg 3187 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 cbvralv2 3203 cbvrexv2 3204 n0f 3559 n0 3560 raaan 3658 nfpw 3734 cbviunv 4006 cbviinv 4007 ssiun2s 4011 iunab 4013 ssiinf 4016 ssiin 4017 iinab 4028 opelopabf 4712 opeliunxp 4821 opeliunxp2 4823 ralxpf 4828 nfco 4883 nfcnv 4892 dfdmf 4906 nfres 4937 nfima 4954 dfrnf 4963 nfrn 4964 dffun6f 5124 dffun6 5125 nffun 5131 nffv 5335 funfv2f 5378 eqfnfv2f 5397 ffnfvf 5429 funiunfvf 5469 dff13f 5473 nfiso 5488 ov3 5600 mpt2eq123 5662 cbvmptv 5678 cbvmpt2x 5679 cbvmpt2 5680 cbvmpt2v 5681 fvmpts 5702 fvmpt2i 5704 fvmptss 5706 ov2gf 5712 fvmptex 5722 fvmptnf 5724 fvmptn 5725 fmpt2x 5731 eqerlem 5961 |
Copyright terms: Public domain | W3C validator |