NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfeq GIF version

Theorem nfeq 2497
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1 xA
nfeq.2 xB
Assertion
Ref Expression
nfeq x A = B

Proof of Theorem nfeq
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2347 . 2 (A = Bz(z Az B))
2 nfnfc.1 . . . . 5 xA
32nfcri 2484 . . . 4 x z A
4 nfeq.2 . . . . 5 xB
54nfcri 2484 . . . 4 x z B
63, 5nfbi 1834 . . 3 x(z Az B)
76nfal 1842 . 2 xz(z Az B)
81, 7nfxfr 1570 1 x A = B
Colors of variables: wff setvar class
Syntax hints:  wb 176  wal 1540  wnf 1544   = wceq 1642   wcel 1710  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479
This theorem is referenced by:  nfel  2498  nfeq1  2499  nfeq2  2501  nfne  2611  raleqf  2804  rexeqf  2805  reueq1f  2806  rmoeq1f  2807  rabeqf  2853  sbceqg  3153  csbhypf  3172  nffn  5181  nffo  5269  eqfnfv2f  5397  dff13f  5473  ov2gf  5712  fvmptf  5723
  Copyright terms: Public domain W3C validator