New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfnel | GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfnel.1 | ⊢ ℲxA |
nfnel.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfnel | ⊢ Ⅎx A ∉ B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 2520 | . 2 ⊢ (A ∉ B ↔ ¬ A ∈ B) | |
2 | nfnel.1 | . . . 4 ⊢ ℲxA | |
3 | nfnel.2 | . . . 4 ⊢ ℲxB | |
4 | 2, 3 | nfel 2498 | . . 3 ⊢ Ⅎx A ∈ B |
5 | 4 | nfn 1793 | . 2 ⊢ Ⅎx ¬ A ∈ B |
6 | 1, 5 | nfxfr 1570 | 1 ⊢ Ⅎx A ∉ B |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1544 ∈ wcel 1710 Ⅎwnfc 2477 ∉ wnel 2518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-nel 2520 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |