NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnel GIF version

Theorem nfnel 2612
Description: Bound-variable hypothesis builder for inequality. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfnel.1 xA
nfnel.2 xB
Assertion
Ref Expression
nfnel x A B

Proof of Theorem nfnel
StepHypRef Expression
1 df-nel 2520 . 2 (A B ↔ ¬ A B)
2 nfnel.1 . . . 4 xA
3 nfnel.2 . . . 4 xB
42, 3nfel 2498 . . 3 x A B
54nfn 1793 . 2 x ¬ A B
61, 5nfxfr 1570 1 x A B
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wnf 1544   wcel 1710  wnfc 2477   wnel 2518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-nel 2520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator