| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfned | GIF version | ||
| Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfned.1 | ⊢ (φ → ℲxA) |
| nfned.2 | ⊢ (φ → ℲxB) |
| Ref | Expression |
|---|---|
| nfned | ⊢ (φ → Ⅎx A ≠ B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2519 | . 2 ⊢ (A ≠ B ↔ ¬ A = B) | |
| 2 | nfned.1 | . . . 4 ⊢ (φ → ℲxA) | |
| 3 | nfned.2 | . . . 4 ⊢ (φ → ℲxB) | |
| 4 | 2, 3 | nfeqd 2504 | . . 3 ⊢ (φ → Ⅎx A = B) |
| 5 | 4 | nfnd 1791 | . 2 ⊢ (φ → Ⅎx ¬ A = B) |
| 6 | 1, 5 | nfxfrd 1571 | 1 ⊢ (φ → Ⅎx A ≠ B) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1544 = wceq 1642 Ⅎwnfc 2477 ≠ wne 2517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-cleq 2346 df-nfc 2479 df-ne 2519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |