New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfneld | GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfneld.1 | ⊢ (φ → ℲxA) |
nfneld.2 | ⊢ (φ → ℲxB) |
Ref | Expression |
---|---|
nfneld | ⊢ (φ → Ⅎx A ∉ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 2520 | . 2 ⊢ (A ∉ B ↔ ¬ A ∈ B) | |
2 | nfneld.1 | . . . 4 ⊢ (φ → ℲxA) | |
3 | nfneld.2 | . . . 4 ⊢ (φ → ℲxB) | |
4 | 2, 3 | nfeld 2505 | . . 3 ⊢ (φ → Ⅎx A ∈ B) |
5 | 4 | nfnd 1791 | . 2 ⊢ (φ → Ⅎx ¬ A ∈ B) |
6 | 1, 5 | nfxfrd 1571 | 1 ⊢ (φ → Ⅎx A ∉ B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1544 ∈ wcel 1710 Ⅎwnfc 2477 ∉ wnel 2518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 df-nfc 2479 df-nel 2520 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |