New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfor | GIF version |
Description: If x is not free in φ and ψ, it is not free in (φ ∨ ψ). (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf.1 | ⊢ Ⅎxφ |
nf.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
nfor | ⊢ Ⅎx(φ ∨ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 359 | . 2 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
2 | nf.1 | . . . 4 ⊢ Ⅎxφ | |
3 | 2 | nfn 1793 | . . 3 ⊢ Ⅎx ¬ φ |
4 | nf.2 | . . 3 ⊢ Ⅎxψ | |
5 | 3, 4 | nfim 1813 | . 2 ⊢ Ⅎx(¬ φ → ψ) |
6 | 1, 5 | nfxfr 1570 | 1 ⊢ Ⅎx(φ ∨ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-or 359 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nf3or 1837 axi12 2333 nfpr 3774 |
Copyright terms: Public domain | W3C validator |