NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfor GIF version

Theorem nfor 1836
Description: If x is not free in φ and ψ, it is not free in (φ ψ). (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1 xφ
nf.2 xψ
Assertion
Ref Expression
nfor x(φ ψ)

Proof of Theorem nfor
StepHypRef Expression
1 df-or 359 . 2 ((φ ψ) ↔ (¬ φψ))
2 nf.1 . . . 4 xφ
32nfn 1793 . . 3 x ¬ φ
4 nf.2 . . 3 xψ
53, 4nfim 1813 . 2 xφψ)
61, 5nfxfr 1570 1 x(φ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-or 359  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  nf3or  1837  axi12  2333  nfpr  3774
  Copyright terms: Public domain W3C validator