| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfbiOLD | GIF version | ||
| Description: If x is not free in φ and ψ, it is not free in (φ ↔ ψ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎxφ |
| nf.2 | ⊢ Ⅎxψ |
| Ref | Expression |
|---|---|
| nfbiOLD | ⊢ Ⅎx(φ ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 609 | . 2 ⊢ ((φ ↔ ψ) ↔ ((φ → ψ) ∧ (ψ → φ))) | |
| 2 | nf.1 | . . . 4 ⊢ Ⅎxφ | |
| 3 | nf.2 | . . . 4 ⊢ Ⅎxψ | |
| 4 | 2, 3 | nfim 1813 | . . 3 ⊢ Ⅎx(φ → ψ) |
| 5 | 3, 2 | nfim 1813 | . . 3 ⊢ Ⅎx(ψ → φ) |
| 6 | 4, 5 | nfan 1824 | . 2 ⊢ Ⅎx((φ → ψ) ∧ (ψ → φ)) |
| 7 | 1, 6 | nfxfr 1570 | 1 ⊢ Ⅎx(φ ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |