New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfpr | GIF version |
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfpr.1 | ⊢ ℲxA |
nfpr.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfpr | ⊢ Ⅎx{A, B} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 3749 | . 2 ⊢ {A, B} = {y ∣ (y = A ∨ y = B)} | |
2 | nfpr.1 | . . . . 5 ⊢ ℲxA | |
3 | 2 | nfeq2 2500 | . . . 4 ⊢ Ⅎx y = A |
4 | nfpr.2 | . . . . 5 ⊢ ℲxB | |
5 | 4 | nfeq2 2500 | . . . 4 ⊢ Ⅎx y = B |
6 | 3, 5 | nfor 1836 | . . 3 ⊢ Ⅎx(y = A ∨ y = B) |
7 | 6 | nfab 2493 | . 2 ⊢ Ⅎx{y ∣ (y = A ∨ y = B)} |
8 | 1, 7 | nfcxfr 2486 | 1 ⊢ Ⅎx{A, B} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 357 = wceq 1642 {cab 2339 Ⅎwnfc 2476 {cpr 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 |
This theorem is referenced by: nfsn 3784 nfopk 4068 |
Copyright terms: Public domain | W3C validator |