New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfreu | GIF version |
Description: Bound-variable hypothesis builder for restricted uniqueness. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfreu.1 | ⊢ ℲxA |
nfreu.2 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
nfreu | ⊢ Ⅎx∃!y ∈ A φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1554 | . . 3 ⊢ Ⅎy ⊤ | |
2 | nfreu.1 | . . . 4 ⊢ ℲxA | |
3 | 2 | a1i 10 | . . 3 ⊢ ( ⊤ → ℲxA) |
4 | nfreu.2 | . . . 4 ⊢ Ⅎxφ | |
5 | 4 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxφ) |
6 | 1, 3, 5 | nfreud 2784 | . 2 ⊢ ( ⊤ → Ⅎx∃!y ∈ A φ) |
7 | 6 | trud 1323 | 1 ⊢ Ⅎx∃!y ∈ A φ |
Colors of variables: wff setvar class |
Syntax hints: ⊤ wtru 1316 Ⅎwnf 1544 Ⅎwnfc 2477 ∃!wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-cleq 2346 df-clel 2349 df-nfc 2479 df-reu 2622 |
This theorem is referenced by: sbcreug 3123 |
Copyright terms: Public domain | W3C validator |