NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfsab1 GIF version

Theorem nfsab1 2343
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfsab1 x y {x φ}
Distinct variable group:   x,y
Allowed substitution hints:   φ(x,y)

Proof of Theorem nfsab1
StepHypRef Expression
1 hbab1 2342 . 2 (y {x φ} → x y {x φ})
21nfi 1551 1 x y {x φ}
Colors of variables: wff setvar class
Syntax hints:  wnf 1544   wcel 1710  {cab 2339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340
This theorem is referenced by:  abbi  2464  nfab1  2492  ralab2  3002  rexab2  3004  eluniab  3904  elintab  3938
  Copyright terms: Public domain W3C validator