New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elintab | GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
inteqab.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
elintab | ⊢ (A ∈ ∩{x ∣ φ} ↔ ∀x(φ → A ∈ x)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . 3 ⊢ A ∈ V | |
2 | 1 | elint 3933 | . 2 ⊢ (A ∈ ∩{x ∣ φ} ↔ ∀y(y ∈ {x ∣ φ} → A ∈ y)) |
3 | nfsab1 2343 | . . . 4 ⊢ Ⅎx y ∈ {x ∣ φ} | |
4 | nfv 1619 | . . . 4 ⊢ Ⅎx A ∈ y | |
5 | 3, 4 | nfim 1813 | . . 3 ⊢ Ⅎx(y ∈ {x ∣ φ} → A ∈ y) |
6 | nfv 1619 | . . 3 ⊢ Ⅎy(φ → A ∈ x) | |
7 | eleq1 2413 | . . . . 5 ⊢ (y = x → (y ∈ {x ∣ φ} ↔ x ∈ {x ∣ φ})) | |
8 | abid 2341 | . . . . 5 ⊢ (x ∈ {x ∣ φ} ↔ φ) | |
9 | 7, 8 | syl6bb 252 | . . . 4 ⊢ (y = x → (y ∈ {x ∣ φ} ↔ φ)) |
10 | eleq2 2414 | . . . 4 ⊢ (y = x → (A ∈ y ↔ A ∈ x)) | |
11 | 9, 10 | imbi12d 311 | . . 3 ⊢ (y = x → ((y ∈ {x ∣ φ} → A ∈ y) ↔ (φ → A ∈ x))) |
12 | 5, 6, 11 | cbval 1984 | . 2 ⊢ (∀y(y ∈ {x ∣ φ} → A ∈ y) ↔ ∀x(φ → A ∈ x)) |
13 | 2, 12 | bitri 240 | 1 ⊢ (A ∈ ∩{x ∣ φ} ↔ ∀x(φ → A ∈ x)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-int 3928 |
This theorem is referenced by: elintrab 3939 intmin4 3956 intab 3957 peano1 4403 peano2 4404 ncvspfin 4539 spfinsfincl 4540 clos1conn 5880 nchoicelem10 6299 |
Copyright terms: Public domain | W3C validator |