NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfab1 GIF version

Theorem nfab1 2492
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1 x{x φ}

Proof of Theorem nfab1
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2343 . 2 x y {x φ}
21nfci 2480 1 x{x φ}
Colors of variables: wff setvar class
Syntax hints:  {cab 2339  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-nfc 2479
This theorem is referenced by:  nfabd2  2508  abid2f  2515  nfrab1  2792  elabgt  2983  elabgf  2984  nfsbc1d  3064  ss2ab  3335  abn0  3569  euabsn  3793  iunab  4013  iinab  4028  sniota  4370
  Copyright terms: Public domain W3C validator