New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unass | GIF version |
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unass | ⊢ ((A ∪ B) ∪ C) = (A ∪ (B ∪ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3221 | . . 3 ⊢ (x ∈ (A ∪ (B ∪ C)) ↔ (x ∈ A ∨ x ∈ (B ∪ C))) | |
2 | elun 3221 | . . . 4 ⊢ (x ∈ (B ∪ C) ↔ (x ∈ B ∨ x ∈ C)) | |
3 | 2 | orbi2i 505 | . . 3 ⊢ ((x ∈ A ∨ x ∈ (B ∪ C)) ↔ (x ∈ A ∨ (x ∈ B ∨ x ∈ C))) |
4 | elun 3221 | . . . . 5 ⊢ (x ∈ (A ∪ B) ↔ (x ∈ A ∨ x ∈ B)) | |
5 | 4 | orbi1i 506 | . . . 4 ⊢ ((x ∈ (A ∪ B) ∨ x ∈ C) ↔ ((x ∈ A ∨ x ∈ B) ∨ x ∈ C)) |
6 | orass 510 | . . . 4 ⊢ (((x ∈ A ∨ x ∈ B) ∨ x ∈ C) ↔ (x ∈ A ∨ (x ∈ B ∨ x ∈ C))) | |
7 | 5, 6 | bitr2i 241 | . . 3 ⊢ ((x ∈ A ∨ (x ∈ B ∨ x ∈ C)) ↔ (x ∈ (A ∪ B) ∨ x ∈ C)) |
8 | 1, 3, 7 | 3bitrri 263 | . 2 ⊢ ((x ∈ (A ∪ B) ∨ x ∈ C) ↔ x ∈ (A ∪ (B ∪ C))) |
9 | 8 | uneqri 3407 | 1 ⊢ ((A ∪ B) ∪ C) = (A ∪ (B ∪ C)) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 357 = wceq 1642 ∈ wcel 1710 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: un12 3422 un23 3423 un4 3424 dfif5 3675 qdass 3820 qdassr 3821 ssunpr 3869 addcass 4416 |
Copyright terms: Public domain | W3C validator |