| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > orcomd | GIF version | ||
| Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
| Ref | Expression |
|---|---|
| orcomd.1 | ⊢ (φ → (ψ ∨ χ)) |
| Ref | Expression |
|---|---|
| orcomd | ⊢ (φ → (χ ∨ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcomd.1 | . 2 ⊢ (φ → (ψ ∨ χ)) | |
| 2 | orcom 376 | . 2 ⊢ ((ψ ∨ χ) ↔ (χ ∨ ψ)) | |
| 3 | 1, 2 | sylib 188 | 1 ⊢ (φ → (χ ∨ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: olcd 382 19.33b 1608 pwadjoin 4120 lefinlteq 4464 vfin1cltv 4548 phi011lem1 4599 erdisj 5973 ncdisjeq 6149 leconnnc 6219 |
| Copyright terms: Public domain | W3C validator |