New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > erdisj | GIF version |
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by set.mm contributors, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
erdisj | ⊢ (R Er V → ([A]R = [B]R ∨ ([A]R ∩ [B]R) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 3561 | . . . 4 ⊢ (¬ ([A]R ∩ [B]R) = ∅ ↔ ∃x x ∈ ([A]R ∩ [B]R)) | |
2 | simpl 443 | . . . . . . 7 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → R Er V) | |
3 | inss1 3476 | . . . . . . . . . . 11 ⊢ ([A]R ∩ [B]R) ⊆ [A]R | |
4 | 3 | sseli 3270 | . . . . . . . . . 10 ⊢ (x ∈ ([A]R ∩ [B]R) → x ∈ [A]R) |
5 | 4 | adantl 452 | . . . . . . . . 9 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → x ∈ [A]R) |
6 | ecexr 5951 | . . . . . . . . 9 ⊢ (x ∈ [A]R → A ∈ V) | |
7 | 5, 6 | syl 15 | . . . . . . . 8 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → A ∈ V) |
8 | vex 2863 | . . . . . . . . 9 ⊢ x ∈ V | |
9 | 8 | a1i 10 | . . . . . . . 8 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → x ∈ V) |
10 | inss2 3477 | . . . . . . . . . . 11 ⊢ ([A]R ∩ [B]R) ⊆ [B]R | |
11 | 10 | sseli 3270 | . . . . . . . . . 10 ⊢ (x ∈ ([A]R ∩ [B]R) → x ∈ [B]R) |
12 | 11 | adantl 452 | . . . . . . . . 9 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → x ∈ [B]R) |
13 | ecexr 5951 | . . . . . . . . 9 ⊢ (x ∈ [B]R → B ∈ V) | |
14 | 12, 13 | syl 15 | . . . . . . . 8 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → B ∈ V) |
15 | elec 5965 | . . . . . . . . . 10 ⊢ (x ∈ [A]R ↔ ARx) | |
16 | 4, 15 | sylib 188 | . . . . . . . . 9 ⊢ (x ∈ ([A]R ∩ [B]R) → ARx) |
17 | 16 | adantl 452 | . . . . . . . 8 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → ARx) |
18 | elec 5965 | . . . . . . . . . 10 ⊢ (x ∈ [B]R ↔ BRx) | |
19 | 11, 18 | sylib 188 | . . . . . . . . 9 ⊢ (x ∈ ([A]R ∩ [B]R) → BRx) |
20 | 19 | adantl 452 | . . . . . . . 8 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → BRx) |
21 | 2, 7, 9, 14, 17, 20 | ertr4d 5959 | . . . . . . 7 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → ARB) |
22 | 2, 21 | erthi 5971 | . . . . . 6 ⊢ ((R Er V ∧ x ∈ ([A]R ∩ [B]R)) → [A]R = [B]R) |
23 | 22 | ex 423 | . . . . 5 ⊢ (R Er V → (x ∈ ([A]R ∩ [B]R) → [A]R = [B]R)) |
24 | 23 | exlimdv 1636 | . . . 4 ⊢ (R Er V → (∃x x ∈ ([A]R ∩ [B]R) → [A]R = [B]R)) |
25 | 1, 24 | syl5bi 208 | . . 3 ⊢ (R Er V → (¬ ([A]R ∩ [B]R) = ∅ → [A]R = [B]R)) |
26 | 25 | orrd 367 | . 2 ⊢ (R Er V → (([A]R ∩ [B]R) = ∅ ∨ [A]R = [B]R)) |
27 | 26 | orcomd 377 | 1 ⊢ (R Er V → ([A]R = [B]R ∨ ([A]R ∩ [B]R) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∩ cin 3209 ∅c0 3551 class class class wbr 4640 Er cer 5899 [cec 5946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 |
This theorem is referenced by: qsdisj 5996 ncdisjeq 6149 |
Copyright terms: Public domain | W3C validator |