NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  phi011lem1 GIF version

Theorem phi011lem1 4599
Description: Lemma for phi011 4600. (Contributed by SF, 3-Feb-2015.)
Assertion
Ref Expression
phi011lem1 (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → Phi A Phi B)

Proof of Theorem phi011lem1
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 ssun1 3427 . . . . 5 Phi A ( Phi A ∪ {0c})
21sseli 3270 . . . 4 (z Phi Az ( Phi A ∪ {0c}))
3 eleq2 2414 . . . 4 (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → (z ( Phi A ∪ {0c}) ↔ z ( Phi B ∪ {0c})))
42, 3syl5ib 210 . . 3 (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → (z Phi Az ( Phi B ∪ {0c})))
5 0cnelphi 4598 . . . . . 6 ¬ 0c Phi A
6 eleq1 2413 . . . . . 6 (z = 0c → (z Phi A ↔ 0c Phi A))
75, 6mtbiri 294 . . . . 5 (z = 0c → ¬ z Phi A)
87con2i 112 . . . 4 (z Phi A → ¬ z = 0c)
98a1i 10 . . 3 (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → (z Phi A → ¬ z = 0c))
10 elun 3221 . . . . . . 7 (z ( Phi B ∪ {0c}) ↔ (z Phi B z {0c}))
11 df-sn 3742 . . . . . . . . 9 {0c} = {z z = 0c}
1211abeq2i 2461 . . . . . . . 8 (z {0c} ↔ z = 0c)
1312orbi2i 505 . . . . . . 7 ((z Phi B z {0c}) ↔ (z Phi B z = 0c))
1410, 13bitri 240 . . . . . 6 (z ( Phi B ∪ {0c}) ↔ (z Phi B z = 0c))
1514biimpi 186 . . . . 5 (z ( Phi B ∪ {0c}) → (z Phi B z = 0c))
1615orcomd 377 . . . 4 (z ( Phi B ∪ {0c}) → (z = 0c z Phi B))
1716ord 366 . . 3 (z ( Phi B ∪ {0c}) → (¬ z = 0cz Phi B))
184, 9, 17ee22 1362 . 2 (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → (z Phi Az Phi B))
1918ssrdv 3279 1 (( Phi A ∪ {0c}) = ( Phi B ∪ {0c}) → Phi A Phi B)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   = wceq 1642   wcel 1710  cun 3208   wss 3258  {csn 3738  0cc0c 4375   Phi cphi 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-if 3664  df-sn 3742  df-int 3928  df-1c 4137  df-0c 4378  df-addc 4379  df-nnc 4380  df-phi 4566
This theorem is referenced by:  phi011  4600
  Copyright terms: Public domain W3C validator