Proof of Theorem vfin1cltv
Step | Hyp | Ref
| Expression |
1 | | uncompl 4075 |
. . . . 5
⊢
(1c ∪ ∼ 1c) =
V |
2 | | ncfineq 4474 |
. . . . 5
⊢
((1c ∪ ∼ 1c) = V →
Ncfin (1c ∪ ∼
1c) = Ncfin
V) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Ncfin (1c ∪ ∼
1c) = Ncfin
V |
4 | | 1cex 4143 |
. . . . 5
⊢
1c ∈
V |
5 | 4 | complex 4105 |
. . . . . 6
⊢ ∼
1c ∈ V |
6 | | incompl 4074 |
. . . . . 6
⊢
(1c ∩ ∼ 1c) = ∅ |
7 | | ncfindi 4476 |
. . . . . 6
⊢ (((V ∈ Fin ∧ 1c ∈ V) ∧ ∼
1c ∈ V ∧ (1c ∩ ∼
1c) = ∅) → Ncfin (1c ∪ ∼
1c) = ( Ncfin
1c +c Ncfin ∼
1c)) |
8 | 5, 6, 7 | mp3an23 1269 |
. . . . 5
⊢ ((V ∈ Fin ∧ 1c ∈ V) → Ncfin (1c ∪ ∼
1c) = ( Ncfin
1c +c Ncfin ∼
1c)) |
9 | 4, 8 | mpan2 652 |
. . . 4
⊢ (V ∈ Fin → Ncfin (1c ∪ ∼
1c) = ( Ncfin
1c +c Ncfin ∼
1c)) |
10 | 3, 9 | syl5reqr 2400 |
. . 3
⊢ (V ∈ Fin → ( Ncfin 1c
+c Ncfin ∼
1c) = Ncfin
V) |
11 | 10 | opkeq2d 4067 |
. 2
⊢ (V ∈ Fin → ⟪
Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ = ⟪ Ncfin 1c, Ncfin V⟫) |
12 | | 0nel1c 4160 |
. . . . . . 7
⊢ ¬ ∅ ∈
1c |
13 | | 0ex 4111 |
. . . . . . . 8
⊢ ∅ ∈
V |
14 | 13 | elcompl 3226 |
. . . . . . 7
⊢ (∅ ∈ ∼
1c ↔ ¬ ∅ ∈ 1c) |
15 | 12, 14 | mpbir 200 |
. . . . . 6
⊢ ∅ ∈ ∼
1c |
16 | | n0i 3556 |
. . . . . 6
⊢ (∅ ∈ ∼
1c → ¬ ∼ 1c = ∅) |
17 | 15, 16 | ax-mp 5 |
. . . . 5
⊢ ¬ ∼
1c = ∅ |
18 | | ncfinprop 4475 |
. . . . . . . . 9
⊢ ((V ∈ Fin ∧ ∼ 1c ∈ V) → ( Ncfin ∼ 1c ∈ Nn ∧ ∼ 1c ∈ Ncfin
∼ 1c)) |
19 | 5, 18 | mpan2 652 |
. . . . . . . 8
⊢ (V ∈ Fin → ( Ncfin ∼ 1c ∈ Nn ∧ ∼ 1c ∈ Ncfin
∼ 1c)) |
20 | 19 | simprd 449 |
. . . . . . 7
⊢ (V ∈ Fin → ∼
1c ∈ Ncfin ∼
1c) |
21 | | eleq2 2414 |
. . . . . . 7
⊢
(0c = Ncfin
∼ 1c → ( ∼ 1c ∈ 0c ↔ ∼
1c ∈ Ncfin ∼
1c)) |
22 | 20, 21 | syl5ibrcom 213 |
. . . . . 6
⊢ (V ∈ Fin →
(0c = Ncfin ∼
1c → ∼ 1c ∈ 0c)) |
23 | | el0c 4422 |
. . . . . 6
⊢ ( ∼
1c ∈ 0c
↔ ∼ 1c = ∅) |
24 | 22, 23 | syl6ib 217 |
. . . . 5
⊢ (V ∈ Fin →
(0c = Ncfin ∼
1c → ∼ 1c = ∅)) |
25 | 17, 24 | mtoi 169 |
. . . 4
⊢ (V ∈ Fin → ¬
0c = Ncfin ∼
1c) |
26 | | addcid1 4406 |
. . . . . 6
⊢ ( Ncfin 1c
+c 0c) = Ncfin 1c |
27 | 26 | eqeq1i 2360 |
. . . . 5
⊢ (( Ncfin 1c
+c 0c) = ( Ncfin 1c
+c Ncfin ∼
1c) ↔ Ncfin
1c = ( Ncfin
1c +c Ncfin ∼
1c)) |
28 | | ncfinprop 4475 |
. . . . . . . 8
⊢ ((V ∈ Fin ∧ 1c ∈ V) → ( Ncfin 1c ∈ Nn ∧ 1c ∈ Ncfin
1c)) |
29 | 4, 28 | mpan2 652 |
. . . . . . 7
⊢ (V ∈ Fin → ( Ncfin 1c ∈ Nn ∧ 1c ∈ Ncfin
1c)) |
30 | 29 | simpld 445 |
. . . . . 6
⊢ (V ∈ Fin → Ncfin 1c ∈ Nn
) |
31 | | peano1 4403 |
. . . . . . 7
⊢
0c ∈ Nn |
32 | 31 | a1i 10 |
. . . . . 6
⊢ (V ∈ Fin →
0c ∈ Nn ) |
33 | 19 | simpld 445 |
. . . . . 6
⊢ (V ∈ Fin → Ncfin ∼ 1c ∈ Nn
) |
34 | 26 | a1i 10 |
. . . . . . 7
⊢ (V ∈ Fin → ( Ncfin 1c
+c 0c) = Ncfin 1c) |
35 | 29 | simprd 449 |
. . . . . . . 8
⊢ (V ∈ Fin →
1c ∈ Ncfin 1c) |
36 | | ne0i 3557 |
. . . . . . . 8
⊢
(1c ∈ Ncfin 1c → Ncfin 1c ≠ ∅) |
37 | 35, 36 | syl 15 |
. . . . . . 7
⊢ (V ∈ Fin → Ncfin 1c ≠ ∅) |
38 | 34, 37 | eqnetrd 2535 |
. . . . . 6
⊢ (V ∈ Fin → ( Ncfin 1c
+c 0c) ≠ ∅) |
39 | | preaddccan2 4456 |
. . . . . 6
⊢ ((( Ncfin 1c ∈ Nn ∧ 0c ∈ Nn ∧ Ncfin
∼ 1c ∈ Nn ) ∧ ( Ncfin 1c
+c 0c) ≠ ∅) → (( Ncfin 1c
+c 0c) = ( Ncfin 1c
+c Ncfin ∼
1c) ↔ 0c = Ncfin ∼
1c)) |
40 | 30, 32, 33, 38, 39 | syl31anc 1185 |
. . . . 5
⊢ (V ∈ Fin → (( Ncfin 1c
+c 0c) = ( Ncfin 1c
+c Ncfin ∼
1c) ↔ 0c = Ncfin ∼
1c)) |
41 | 27, 40 | syl5bbr 250 |
. . . 4
⊢ (V ∈ Fin → ( Ncfin 1c = ( Ncfin 1c
+c Ncfin ∼
1c) ↔ 0c = Ncfin ∼
1c)) |
42 | 25, 41 | mtbird 292 |
. . 3
⊢ (V ∈ Fin → ¬
Ncfin 1c = ( Ncfin 1c
+c Ncfin ∼
1c)) |
43 | | ncfinex 4473 |
. . . . . . 7
⊢ Ncfin 1c ∈ V |
44 | | lefinaddc 4451 |
. . . . . . 7
⊢ (( Ncfin 1c ∈ V ∧ Ncfin ∼ 1c ∈ Nn ) → ⟪
Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
≤fin ) |
45 | 43, 33, 44 | sylancr 644 |
. . . . . 6
⊢ (V ∈ Fin → ⟪
Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
≤fin ) |
46 | | ncfinex 4473 |
. . . . . . . . 9
⊢ Ncfin ∼ 1c ∈ V |
47 | 43, 46 | addcex 4395 |
. . . . . . . 8
⊢ ( Ncfin 1c
+c Ncfin ∼
1c) ∈ V |
48 | | lefinlteq 4464 |
. . . . . . . 8
⊢ (( Ncfin 1c ∈ V ∧ ( Ncfin 1c
+c Ncfin ∼
1c) ∈ V ∧ Ncfin
1c ≠ ∅) →
(⟪ Ncfin 1c, (
Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
≤fin ↔ (⟪ Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
<fin ∨ Ncfin 1c = ( Ncfin 1c
+c Ncfin ∼
1c)))) |
49 | 43, 47, 48 | mp3an12 1267 |
. . . . . . 7
⊢ ( Ncfin 1c ≠ ∅ → (⟪ Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
≤fin ↔ (⟪ Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
<fin ∨ Ncfin 1c = ( Ncfin 1c
+c Ncfin ∼
1c)))) |
50 | 37, 49 | syl 15 |
. . . . . 6
⊢ (V ∈ Fin → (⟪
Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
≤fin ↔ (⟪ Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
<fin ∨ Ncfin 1c = ( Ncfin 1c
+c Ncfin ∼
1c)))) |
51 | 45, 50 | mpbid 201 |
. . . . 5
⊢ (V ∈ Fin → (⟪
Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
<fin ∨ Ncfin 1c = ( Ncfin 1c
+c Ncfin ∼
1c))) |
52 | 51 | orcomd 377 |
. . . 4
⊢ (V ∈ Fin → ( Ncfin 1c = ( Ncfin 1c
+c Ncfin ∼
1c) ∨ ⟪ Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
<fin )) |
53 | 52 | ord 366 |
. . 3
⊢ (V ∈ Fin → (¬
Ncfin 1c = ( Ncfin 1c
+c Ncfin ∼
1c) → ⟪ Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
<fin )) |
54 | 42, 53 | mpd 14 |
. 2
⊢ (V ∈ Fin → ⟪
Ncfin 1c, ( Ncfin 1c
+c Ncfin ∼
1c)⟫ ∈
<fin ) |
55 | 11, 54 | eqeltrrd 2428 |
1
⊢ (V ∈ Fin → ⟪
Ncfin 1c, Ncfin V⟫ ∈ <fin ) |