New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ncdisjeq | GIF version |
Description: Two cardinals are either disjoint or equal. (Contributed by SF, 25-Feb-2015.) |
Ref | Expression |
---|---|
ncdisjeq | ⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A ∩ B) = ∅ ∨ A = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elncs 6120 | . . . 4 ⊢ (A ∈ NC ↔ ∃x A = Nc x) | |
2 | elncs 6120 | . . . 4 ⊢ (B ∈ NC ↔ ∃y B = Nc y) | |
3 | 1, 2 | anbi12i 678 | . . 3 ⊢ ((A ∈ NC ∧ B ∈ NC ) ↔ (∃x A = Nc x ∧ ∃y B = Nc y)) |
4 | eeanv 1913 | . . 3 ⊢ (∃x∃y(A = Nc x ∧ B = Nc y) ↔ (∃x A = Nc x ∧ ∃y B = Nc y)) | |
5 | 3, 4 | bitr4i 243 | . 2 ⊢ ((A ∈ NC ∧ B ∈ NC ) ↔ ∃x∃y(A = Nc x ∧ B = Nc y)) |
6 | ener 6040 | . . . . . 6 ⊢ ≈ Er V | |
7 | erdisj 5973 | . . . . . 6 ⊢ ( ≈ Er V → ([x] ≈ = [y] ≈ ∨ ([x] ≈ ∩ [y] ≈ ) = ∅)) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ ([x] ≈ = [y] ≈ ∨ ([x] ≈ ∩ [y] ≈ ) = ∅) |
9 | df-nc 6102 | . . . . . . 7 ⊢ Nc x = [x] ≈ | |
10 | eqtr 2370 | . . . . . . 7 ⊢ ((A = Nc x ∧ Nc x = [x] ≈ ) → A = [x] ≈ ) | |
11 | 9, 10 | mpan2 652 | . . . . . 6 ⊢ (A = Nc x → A = [x] ≈ ) |
12 | df-nc 6102 | . . . . . . 7 ⊢ Nc y = [y] ≈ | |
13 | eqtr 2370 | . . . . . . 7 ⊢ ((B = Nc y ∧ Nc y = [y] ≈ ) → B = [y] ≈ ) | |
14 | 12, 13 | mpan2 652 | . . . . . 6 ⊢ (B = Nc y → B = [y] ≈ ) |
15 | eqeq12 2365 | . . . . . . 7 ⊢ ((A = [x] ≈ ∧ B = [y] ≈ ) → (A = B ↔ [x] ≈ = [y] ≈ )) | |
16 | ineq12 3453 | . . . . . . . 8 ⊢ ((A = [x] ≈ ∧ B = [y] ≈ ) → (A ∩ B) = ([x] ≈ ∩ [y] ≈ )) | |
17 | 16 | eqeq1d 2361 | . . . . . . 7 ⊢ ((A = [x] ≈ ∧ B = [y] ≈ ) → ((A ∩ B) = ∅ ↔ ([x] ≈ ∩ [y] ≈ ) = ∅)) |
18 | 15, 17 | orbi12d 690 | . . . . . 6 ⊢ ((A = [x] ≈ ∧ B = [y] ≈ ) → ((A = B ∨ (A ∩ B) = ∅) ↔ ([x] ≈ = [y] ≈ ∨ ([x] ≈ ∩ [y] ≈ ) = ∅))) |
19 | 11, 14, 18 | syl2an 463 | . . . . 5 ⊢ ((A = Nc x ∧ B = Nc y) → ((A = B ∨ (A ∩ B) = ∅) ↔ ([x] ≈ = [y] ≈ ∨ ([x] ≈ ∩ [y] ≈ ) = ∅))) |
20 | 8, 19 | mpbiri 224 | . . . 4 ⊢ ((A = Nc x ∧ B = Nc y) → (A = B ∨ (A ∩ B) = ∅)) |
21 | 20 | orcomd 377 | . . 3 ⊢ ((A = Nc x ∧ B = Nc y) → ((A ∩ B) = ∅ ∨ A = B)) |
22 | 21 | exlimivv 1635 | . 2 ⊢ (∃x∃y(A = Nc x ∧ B = Nc y) → ((A ∩ B) = ∅ ∨ A = B)) |
23 | 5, 22 | sylbi 187 | 1 ⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A ∩ B) = ∅ ∨ A = B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∩ cin 3209 ∅c0 3551 class class class wbr 4640 Er cer 5899 [cec 5946 ≈ cen 6029 NC cncs 6089 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 |
This theorem is referenced by: nceleq 6150 |
Copyright terms: Public domain | W3C validator |