| Step | Hyp | Ref
| Expression |
| 1 | | nnc0suc 4413 |
. . . . . . . 8
⊢ (x ∈ Nn ↔ (x =
0c ∨ ∃y ∈ Nn x = (y
+c 1c))) |
| 2 | | addceq2 4385 |
. . . . . . . . . 10
⊢ (x = 0c → (A +c x) = (A
+c 0c)) |
| 3 | | addcid1 4406 |
. . . . . . . . . 10
⊢ (A +c 0c) =
A |
| 4 | 2, 3 | syl6req 2402 |
. . . . . . . . 9
⊢ (x = 0c → A = (A
+c x)) |
| 5 | | addceq2 4385 |
. . . . . . . . . . 11
⊢ (x = (y
+c 1c) → (A +c x) = (A
+c (y
+c 1c))) |
| 6 | | addcass 4416 |
. . . . . . . . . . 11
⊢ ((A +c y) +c 1c) =
(A +c (y +c
1c)) |
| 7 | 5, 6 | syl6eqr 2403 |
. . . . . . . . . 10
⊢ (x = (y
+c 1c) → (A +c x) = ((A
+c y)
+c 1c)) |
| 8 | 7 | reximi 2722 |
. . . . . . . . 9
⊢ (∃y ∈ Nn x = (y
+c 1c) → ∃y ∈ Nn (A +c x) = ((A
+c y)
+c 1c)) |
| 9 | 4, 8 | orim12i 502 |
. . . . . . . 8
⊢ ((x = 0c
∨ ∃y ∈ Nn x = (y +c 1c)) →
(A = (A
+c x) ∨ ∃y ∈ Nn (A
+c x) = ((A +c y) +c
1c))) |
| 10 | 1, 9 | sylbi 187 |
. . . . . . 7
⊢ (x ∈ Nn → (A =
(A +c x) ∨ ∃y ∈ Nn (A +c x) = ((A
+c y)
+c 1c))) |
| 11 | 10 | orcomd 377 |
. . . . . 6
⊢ (x ∈ Nn → (∃y ∈ Nn (A
+c x) = ((A +c y) +c 1c) ∨ A = (A +c x))) |
| 12 | | eqeq1 2359 |
. . . . . . . 8
⊢ (B = (A
+c x) → (B = ((A
+c y)
+c 1c) ↔ (A +c x) = ((A
+c y)
+c 1c))) |
| 13 | 12 | rexbidv 2636 |
. . . . . . 7
⊢ (B = (A
+c x) → (∃y ∈ Nn B = ((A
+c y)
+c 1c) ↔ ∃y ∈ Nn (A +c x) = ((A
+c y)
+c 1c))) |
| 14 | | eqeq2 2362 |
. . . . . . 7
⊢ (B = (A
+c x) → (A = B ↔
A = (A
+c x))) |
| 15 | 13, 14 | orbi12d 690 |
. . . . . 6
⊢ (B = (A
+c x) → ((∃y ∈ Nn B = ((A
+c y)
+c 1c) ∨
A = B)
↔ (∃y ∈ Nn (A
+c x) = ((A +c y) +c 1c) ∨ A = (A +c x)))) |
| 16 | 11, 15 | syl5ibrcom 213 |
. . . . 5
⊢ (x ∈ Nn → (B =
(A +c x) → (∃y ∈ Nn B = ((A
+c y)
+c 1c) ∨
A = B))) |
| 17 | 16 | rexlimiv 2733 |
. . . 4
⊢ (∃x ∈ Nn B = (A
+c x) → (∃y ∈ Nn B = ((A
+c y)
+c 1c) ∨
A = B)) |
| 18 | 6 | eqeq2i 2363 |
. . . . . . 7
⊢ (B = ((A
+c y)
+c 1c) ↔ B = (A
+c (y
+c 1c))) |
| 19 | | peano2 4404 |
. . . . . . . 8
⊢ (y ∈ Nn → (y
+c 1c) ∈
Nn ) |
| 20 | 5 | eqeq2d 2364 |
. . . . . . . . 9
⊢ (x = (y
+c 1c) → (B = (A
+c x) ↔ B = (A
+c (y
+c 1c)))) |
| 21 | 20 | rspcev 2956 |
. . . . . . . 8
⊢ (((y +c 1c) ∈ Nn ∧ B = (A +c (y +c 1c)))
→ ∃x ∈ Nn B = (A +c x)) |
| 22 | 19, 21 | sylan 457 |
. . . . . . 7
⊢ ((y ∈ Nn ∧ B = (A
+c (y
+c 1c))) → ∃x ∈ Nn B = (A
+c x)) |
| 23 | 18, 22 | sylan2b 461 |
. . . . . 6
⊢ ((y ∈ Nn ∧ B = ((A
+c y)
+c 1c)) → ∃x ∈ Nn B = (A
+c x)) |
| 24 | 23 | rexlimiva 2734 |
. . . . 5
⊢ (∃y ∈ Nn B = ((A
+c y)
+c 1c) → ∃x ∈ Nn B = (A
+c x)) |
| 25 | | peano1 4403 |
. . . . . . 7
⊢
0c ∈ Nn |
| 26 | 3 | eqcomi 2357 |
. . . . . . 7
⊢ A = (A
+c 0c) |
| 27 | 2 | eqeq2d 2364 |
. . . . . . . 8
⊢ (x = 0c → (A = (A
+c x) ↔ A = (A
+c 0c))) |
| 28 | 27 | rspcev 2956 |
. . . . . . 7
⊢
((0c ∈ Nn ∧ A = (A
+c 0c)) → ∃x ∈ Nn A = (A
+c x)) |
| 29 | 25, 26, 28 | mp2an 653 |
. . . . . 6
⊢ ∃x ∈ Nn A = (A
+c x) |
| 30 | | eqeq1 2359 |
. . . . . . 7
⊢ (A = B →
(A = (A
+c x) ↔ B = (A
+c x))) |
| 31 | 30 | rexbidv 2636 |
. . . . . 6
⊢ (A = B →
(∃x
∈ Nn A = (A
+c x) ↔ ∃x ∈ Nn B = (A
+c x))) |
| 32 | 29, 31 | mpbii 202 |
. . . . 5
⊢ (A = B →
∃x ∈ Nn B = (A
+c x)) |
| 33 | 24, 32 | jaoi 368 |
. . . 4
⊢ ((∃y ∈ Nn B = ((A
+c y)
+c 1c) ∨
A = B)
→ ∃x ∈ Nn B = (A +c x)) |
| 34 | 17, 33 | impbii 180 |
. . 3
⊢ (∃x ∈ Nn B = (A
+c x) ↔ (∃y ∈ Nn B = ((A
+c y)
+c 1c) ∨
A = B)) |
| 35 | 34 | a1i 10 |
. 2
⊢ ((A ∈ V ∧ B ∈ W ∧ A ≠ ∅) →
(∃x
∈ Nn B = (A
+c x) ↔ (∃y ∈ Nn B = ((A
+c y)
+c 1c) ∨
A = B))) |
| 36 | | opklefing 4449 |
. . 3
⊢ ((A ∈ V ∧ B ∈ W) → (⟪A, B⟫
∈ ≤fin ↔ ∃x ∈ Nn B = (A
+c x))) |
| 37 | 36 | 3adant3 975 |
. 2
⊢ ((A ∈ V ∧ B ∈ W ∧ A ≠ ∅) →
(⟪A, B⟫ ∈
≤fin ↔ ∃x ∈ Nn B = (A +c x))) |
| 38 | | opkltfing 4450 |
. . . . . 6
⊢ ((A ∈ V ∧ B ∈ W) → (⟪A, B⟫
∈ <fin ↔ (A ≠ ∅ ∧ ∃y ∈ Nn B = ((A +c y) +c
1c)))) |
| 39 | 38 | adantr 451 |
. . . . 5
⊢ (((A ∈ V ∧ B ∈ W) ∧ A ≠ ∅) →
(⟪A, B⟫ ∈
<fin ↔ (A ≠ ∅ ∧ ∃y ∈ Nn B = ((A
+c y)
+c 1c)))) |
| 40 | | ibar 490 |
. . . . . 6
⊢ (A ≠ ∅ →
(∃y
∈ Nn B = ((A
+c y)
+c 1c) ↔ (A ≠ ∅ ∧ ∃y ∈ Nn B = ((A +c y) +c
1c)))) |
| 41 | 40 | adantl 452 |
. . . . 5
⊢ (((A ∈ V ∧ B ∈ W) ∧ A ≠ ∅) →
(∃y
∈ Nn B = ((A
+c y)
+c 1c) ↔ (A ≠ ∅ ∧ ∃y ∈ Nn B = ((A +c y) +c
1c)))) |
| 42 | 39, 41 | bitr4d 247 |
. . . 4
⊢ (((A ∈ V ∧ B ∈ W) ∧ A ≠ ∅) →
(⟪A, B⟫ ∈
<fin ↔ ∃y ∈ Nn B = ((A +c y) +c
1c))) |
| 43 | 42 | orbi1d 683 |
. . 3
⊢ (((A ∈ V ∧ B ∈ W) ∧ A ≠ ∅) →
((⟪A, B⟫ ∈
<fin ∨ A = B) ↔
(∃y
∈ Nn B = ((A
+c y)
+c 1c) ∨
A = B))) |
| 44 | 43 | 3impa 1146 |
. 2
⊢ ((A ∈ V ∧ B ∈ W ∧ A ≠ ∅) →
((⟪A, B⟫ ∈
<fin ∨ A = B) ↔
(∃y
∈ Nn B = ((A
+c y)
+c 1c) ∨
A = B))) |
| 45 | 35, 37, 44 | 3bitr4d 276 |
1
⊢ ((A ∈ V ∧ B ∈ W ∧ A ≠ ∅) →
(⟪A, B⟫ ∈
≤fin ↔ (⟪A,
B⟫ ∈ <fin
∨ A = B))) |