Step | Hyp | Ref
| Expression |
1 | | uncom 3409 |
. . . . . . . . . . . . . . 15
⊢ (A ∪ {X}) =
({X} ∪ A) |
2 | 1 | sseq2i 3297 |
. . . . . . . . . . . . . 14
⊢ (z ⊆ (A ∪ {X})
↔ z ⊆ ({X} ∪
A)) |
3 | | ssundif 3634 |
. . . . . . . . . . . . . 14
⊢ (z ⊆ ({X} ∪ A)
↔ (z ∖ {X}) ⊆ A) |
4 | 2, 3 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (z ⊆ (A ∪ {X})
↔ (z ∖ {X}) ⊆ A) |
5 | 4 | biimpi 186 |
. . . . . . . . . . . 12
⊢ (z ⊆ (A ∪ {X})
→ (z ∖ {X}) ⊆ A) |
6 | 5 | adantr 451 |
. . . . . . . . . . 11
⊢ ((z ⊆ (A ∪ {X})
∧ X ∈ z) →
(z ∖
{X}) ⊆
A) |
7 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ z ∈
V |
8 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {X} ∈
V |
9 | 7, 8 | difex 4108 |
. . . . . . . . . . . 12
⊢ (z ∖ {X}) ∈
V |
10 | 9 | elpw 3729 |
. . . . . . . . . . 11
⊢ ((z ∖ {X}) ∈ ℘A ↔
(z ∖
{X}) ⊆
A) |
11 | 6, 10 | sylibr 203 |
. . . . . . . . . 10
⊢ ((z ⊆ (A ∪ {X})
∧ X ∈ z) →
(z ∖
{X}) ∈
℘A) |
12 | | difsnid 3855 |
. . . . . . . . . . . 12
⊢ (X ∈ z → ((z
∖ {X})
∪ {X}) = z) |
13 | 12 | eqcomd 2358 |
. . . . . . . . . . 11
⊢ (X ∈ z → z =
((z ∖
{X}) ∪ {X})) |
14 | 13 | adantl 452 |
. . . . . . . . . 10
⊢ ((z ⊆ (A ∪ {X})
∧ X ∈ z) →
z = ((z
∖ {X})
∪ {X})) |
15 | | uneq1 3412 |
. . . . . . . . . . . 12
⊢ (b = (z ∖ {X}) →
(b ∪ {X}) = ((z ∖ {X}) ∪
{X})) |
16 | 15 | eqeq2d 2364 |
. . . . . . . . . . 11
⊢ (b = (z ∖ {X}) →
(z = (b
∪ {X}) ↔ z = ((z ∖ {X}) ∪
{X}))) |
17 | 16 | rspcev 2956 |
. . . . . . . . . 10
⊢ (((z ∖ {X}) ∈ ℘A ∧ z = ((z ∖ {X}) ∪ {X}))
→ ∃b ∈ ℘ Az = (b ∪
{X})) |
18 | 11, 14, 17 | syl2anc 642 |
. . . . . . . . 9
⊢ ((z ⊆ (A ∪ {X})
∧ X ∈ z) →
∃b ∈ ℘ Az = (b ∪ {X})) |
19 | 18 | ex 423 |
. . . . . . . 8
⊢ (z ⊆ (A ∪ {X})
→ (X ∈ z →
∃b ∈ ℘ Az = (b ∪ {X}))) |
20 | 19 | con3d 125 |
. . . . . . 7
⊢ (z ⊆ (A ∪ {X})
→ (¬ ∃b ∈ ℘ Az = (b ∪
{X}) → ¬ X ∈ z)) |
21 | | ssel 3268 |
. . . . . . . . . . . . 13
⊢ (z ⊆ (A ∪ {X})
→ (x ∈ z →
x ∈
(A ∪ {X}))) |
22 | 21 | com12 27 |
. . . . . . . . . . . 12
⊢ (x ∈ z → (z
⊆ (A
∪ {X}) → x ∈ (A ∪ {X}))) |
23 | | elun 3221 |
. . . . . . . . . . . . . . . 16
⊢ (x ∈ (A ∪ {X})
↔ (x ∈ A ∨ x ∈ {X})) |
24 | | elsn 3749 |
. . . . . . . . . . . . . . . . 17
⊢ (x ∈ {X} ↔ x =
X) |
25 | 24 | orbi2i 505 |
. . . . . . . . . . . . . . . 16
⊢ ((x ∈ A ∨ x ∈ {X}) ↔ (x
∈ A ∨ x = X)) |
26 | 23, 25 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ (x ∈ (A ∪ {X})
↔ (x ∈ A ∨ x = X)) |
27 | | ax-1 6 |
. . . . . . . . . . . . . . . 16
⊢ (x ∈ A → ((x
∈ z ∧ ¬ X ∈ z) →
x ∈
A)) |
28 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . 18
⊢ (x = X →
(x ∈
z ↔ X ∈ z)) |
29 | 28 | anbi1d 685 |
. . . . . . . . . . . . . . . . 17
⊢ (x = X →
((x ∈
z ∧ ¬
X ∈
z) ↔ (X ∈ z ∧ ¬ X ∈ z))) |
30 | | pm2.21 100 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ X ∈ z → (X
∈ z
→ x ∈ A)) |
31 | 30 | impcom 419 |
. . . . . . . . . . . . . . . . 17
⊢ ((X ∈ z ∧ ¬ X ∈ z) → x
∈ A) |
32 | 29, 31 | syl6bi 219 |
. . . . . . . . . . . . . . . 16
⊢ (x = X →
((x ∈
z ∧ ¬
X ∈
z) → x ∈ A)) |
33 | 27, 32 | jaoi 368 |
. . . . . . . . . . . . . . 15
⊢ ((x ∈ A ∨ x = X) →
((x ∈
z ∧ ¬
X ∈
z) → x ∈ A)) |
34 | 26, 33 | sylbi 187 |
. . . . . . . . . . . . . 14
⊢ (x ∈ (A ∪ {X})
→ ((x ∈ z ∧ ¬ X ∈ z) →
x ∈
A)) |
35 | 34 | exp3a 425 |
. . . . . . . . . . . . 13
⊢ (x ∈ (A ∪ {X})
→ (x ∈ z →
(¬ X ∈ z →
x ∈
A))) |
36 | 35 | com12 27 |
. . . . . . . . . . . 12
⊢ (x ∈ z → (x
∈ (A
∪ {X}) → (¬ X ∈ z → x ∈ A))) |
37 | 22, 36 | syld 40 |
. . . . . . . . . . 11
⊢ (x ∈ z → (z
⊆ (A
∪ {X}) → (¬ X ∈ z → x ∈ A))) |
38 | 37 | imp3a 420 |
. . . . . . . . . 10
⊢ (x ∈ z → ((z
⊆ (A
∪ {X}) ∧ ¬ X ∈ z) →
x ∈
A)) |
39 | 38 | com12 27 |
. . . . . . . . 9
⊢ ((z ⊆ (A ∪ {X})
∧ ¬ X
∈ z)
→ (x ∈ z →
x ∈
A)) |
40 | 39 | ssrdv 3279 |
. . . . . . . 8
⊢ ((z ⊆ (A ∪ {X})
∧ ¬ X
∈ z)
→ z ⊆ A) |
41 | 40 | ex 423 |
. . . . . . 7
⊢ (z ⊆ (A ∪ {X})
→ (¬ X ∈ z →
z ⊆
A)) |
42 | 20, 41 | syld 40 |
. . . . . 6
⊢ (z ⊆ (A ∪ {X})
→ (¬ ∃b ∈ ℘ Az = (b ∪
{X}) → z ⊆ A)) |
43 | 42 | orrd 367 |
. . . . 5
⊢ (z ⊆ (A ∪ {X})
→ (∃b ∈ ℘ Az = (b ∪
{X}) ∨
z ⊆
A)) |
44 | 43 | orcomd 377 |
. . . 4
⊢ (z ⊆ (A ∪ {X})
→ (z ⊆ A ∨ ∃b ∈ ℘ Az = (b ∪
{X}))) |
45 | | ssun3 3429 |
. . . . 5
⊢ (z ⊆ A → z ⊆ (A ∪
{X})) |
46 | | vex 2863 |
. . . . . . . . 9
⊢ b ∈
V |
47 | 46 | elpw 3729 |
. . . . . . . 8
⊢ (b ∈ ℘A ↔
b ⊆
A) |
48 | | unss1 3433 |
. . . . . . . 8
⊢ (b ⊆ A → (b
∪ {X}) ⊆ (A ∪
{X})) |
49 | 47, 48 | sylbi 187 |
. . . . . . 7
⊢ (b ∈ ℘A →
(b ∪ {X}) ⊆ (A ∪ {X})) |
50 | | sseq1 3293 |
. . . . . . 7
⊢ (z = (b ∪
{X}) → (z ⊆ (A ∪ {X})
↔ (b ∪ {X}) ⊆ (A ∪ {X}))) |
51 | 49, 50 | syl5ibrcom 213 |
. . . . . 6
⊢ (b ∈ ℘A →
(z = (b
∪ {X}) → z ⊆ (A ∪ {X}))) |
52 | 51 | rexlimiv 2733 |
. . . . 5
⊢ (∃b ∈ ℘ Az = (b ∪ {X})
→ z ⊆ (A ∪
{X})) |
53 | 45, 52 | jaoi 368 |
. . . 4
⊢ ((z ⊆ A ∨ ∃b ∈ ℘ Az = (b ∪ {X}))
→ z ⊆ (A ∪
{X})) |
54 | 44, 53 | impbii 180 |
. . 3
⊢ (z ⊆ (A ∪ {X})
↔ (z ⊆ A ∨ ∃b ∈ ℘ Az = (b ∪
{X}))) |
55 | 7 | elpw 3729 |
. . 3
⊢ (z ∈ ℘(A ∪
{X}) ↔ z ⊆ (A ∪ {X})) |
56 | | elun 3221 |
. . . 4
⊢ (z ∈ (℘A ∪
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})})
↔ (z ∈ ℘A ∨ z ∈ {a ∣ ∃b ∈ ℘ Aa = (b ∪ {X})})) |
57 | 7 | elpw 3729 |
. . . . 5
⊢ (z ∈ ℘A ↔
z ⊆
A) |
58 | | eqeq1 2359 |
. . . . . . 7
⊢ (a = z →
(a = (b
∪ {X}) ↔ z = (b ∪
{X}))) |
59 | 58 | rexbidv 2636 |
. . . . . 6
⊢ (a = z →
(∃b
∈ ℘
Aa =
(b ∪ {X}) ↔ ∃b ∈ ℘ Az = (b ∪ {X}))) |
60 | 7, 59 | elab 2986 |
. . . . 5
⊢ (z ∈ {a ∣ ∃b ∈ ℘ Aa = (b ∪ {X})}
↔ ∃b ∈ ℘ Az = (b ∪
{X})) |
61 | 57, 60 | orbi12i 507 |
. . . 4
⊢ ((z ∈ ℘A ∨ z ∈ {a ∣ ∃b ∈ ℘ Aa = (b ∪
{X})}) ↔ (z ⊆ A ∨ ∃b ∈ ℘ Az = (b ∪ {X}))) |
62 | 56, 61 | bitri 240 |
. . 3
⊢ (z ∈ (℘A ∪
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})})
↔ (z ⊆ A ∨ ∃b ∈ ℘ Az = (b ∪
{X}))) |
63 | 54, 55, 62 | 3bitr4i 268 |
. 2
⊢ (z ∈ ℘(A ∪
{X}) ↔ z ∈ (℘A ∪
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})})) |
64 | 63 | eqriv 2350 |
1
⊢ ℘(A ∪
{X}) = (℘A ∪
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})}) |