Proof of Theorem nchoicelem9
Step | Hyp | Ref
| Expression |
1 | | brltc 6115 |
. . . . 5
⊢ ( Nc 1c <c M ↔ ( Nc
1c ≤c M
∧ Nc
1c ≠ M)) |
2 | 1 | simplbi 446 |
. . . 4
⊢ ( Nc 1c <c M → Nc
1c ≤c M) |
3 | | 1cex 4143 |
. . . . . . . 8
⊢
1c ∈
V |
4 | 3 | ncelncsi 6122 |
. . . . . . 7
⊢ Nc 1c ∈ NC |
5 | | tlecg 6231 |
. . . . . . 7
⊢ (( Nc 1c ∈ NC ∧ M ∈ NC ) → ( Nc 1c ≤c M ↔ Tc
Nc 1c ≤c Tc M)) |
6 | 4, 5 | mpan 651 |
. . . . . 6
⊢ (M ∈ NC → ( Nc
1c ≤c M
↔ Tc Nc 1c ≤c Tc M)) |
7 | 6 | adantl 452 |
. . . . 5
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c ≤c M ↔ Tc
Nc 1c ≤c Tc M)) |
8 | | tcnc1c 6228 |
. . . . . . 7
⊢ Tc Nc
1c = Nc ℘11c |
9 | 8 | breq1i 4647 |
. . . . . 6
⊢ ( Tc Nc
1c ≤c Tc M
↔ Nc ℘11c
≤c Tc M) |
10 | | tccl 6161 |
. . . . . . . . 9
⊢ (M ∈ NC → Tc
M ∈ NC ) |
11 | | te0c 6238 |
. . . . . . . . 9
⊢ (M ∈ NC → ( Tc
M ↑c
0c) ∈ NC ) |
12 | 3 | pw1ex 4304 |
. . . . . . . . . . 11
⊢ ℘11c ∈ V |
13 | 12 | ncelncsi 6122 |
. . . . . . . . . 10
⊢ Nc ℘11c ∈ NC |
14 | | ce2le 6234 |
. . . . . . . . . . 11
⊢ ((( Nc ℘11c ∈ NC ∧ Tc
M ∈ NC ∧ ( Tc M
↑c 0c) ∈ NC ) ∧ Nc ℘11c
≤c Tc M) → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M)) |
15 | 14 | ex 423 |
. . . . . . . . . 10
⊢ (( Nc ℘11c ∈ NC ∧ Tc
M ∈ NC ∧ ( Tc M
↑c 0c) ∈ NC ) → ( Nc ℘11c
≤c Tc M → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M))) |
16 | 13, 15 | mp3an1 1264 |
. . . . . . . . 9
⊢ (( Tc M
∈ NC ∧ ( Tc
M ↑c
0c) ∈ NC ) → ( Nc ℘11c
≤c Tc M → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M))) |
17 | 10, 11, 16 | syl2anc 642 |
. . . . . . . 8
⊢ (M ∈ NC → ( Nc ℘11c
≤c Tc M → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M))) |
18 | 17 | adantl 452 |
. . . . . . 7
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc ℘11c
≤c Tc M → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M))) |
19 | | ce2ncpw11c 6195 |
. . . . . . . . 9
⊢
(2c ↑c Nc ℘11c) = Nc 1c |
20 | 19 | breq1i 4647 |
. . . . . . . 8
⊢
((2c ↑c Nc ℘11c)
≤c (2c ↑c Tc M)
↔ Nc 1c ≤c
(2c ↑c Tc M)) |
21 | | orc 374 |
. . . . . . . . . 10
⊢ ( Nc 1c ≤c
(2c ↑c Tc M)
→ ( Nc 1c ≤c
(2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))) |
22 | | brltc 6115 |
. . . . . . . . . . . 12
⊢ ( Nc 1c <c
(2c ↑c Tc M)
↔ ( Nc 1c ≤c
(2c ↑c Tc M)
∧ Nc
1c ≠ (2c ↑c Tc M))) |
23 | 22 | orbi1i 506 |
. . . . . . . . . . 11
⊢ (( Nc 1c <c
(2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))
↔ (( Nc 1c ≤c
(2c ↑c Tc M)
∧ Nc
1c ≠ (2c ↑c Tc M))
∨ Nc
1c = (2c ↑c Tc M))) |
24 | | pm2.1 406 |
. . . . . . . . . . . . 13
⊢ (¬ Nc 1c = (2c
↑c Tc M) ∨ Nc 1c = (2c
↑c Tc M)) |
25 | | df-ne 2519 |
. . . . . . . . . . . . . 14
⊢ ( Nc 1c ≠ (2c
↑c Tc M) ↔ ¬ Nc
1c = (2c ↑c Tc M)) |
26 | 25 | orbi1i 506 |
. . . . . . . . . . . . 13
⊢ (( Nc 1c ≠ (2c
↑c Tc M) ∨ Nc 1c = (2c
↑c Tc M)) ↔ (¬ Nc
1c = (2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))) |
27 | 24, 26 | mpbir 200 |
. . . . . . . . . . . 12
⊢ ( Nc 1c ≠ (2c
↑c Tc M) ∨ Nc 1c = (2c
↑c Tc M)) |
28 | | ordir 835 |
. . . . . . . . . . . 12
⊢ ((( Nc 1c ≤c
(2c ↑c Tc M)
∧ Nc
1c ≠ (2c ↑c Tc M))
∨ Nc
1c = (2c ↑c Tc M))
↔ (( Nc 1c ≤c
(2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))
∧ ( Nc
1c ≠ (2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M)))) |
29 | 27, 28 | mpbiran2 885 |
. . . . . . . . . . 11
⊢ ((( Nc 1c ≤c
(2c ↑c Tc M)
∧ Nc
1c ≠ (2c ↑c Tc M))
∨ Nc
1c = (2c ↑c Tc M))
↔ ( Nc 1c ≤c
(2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))) |
30 | 23, 29 | bitri 240 |
. . . . . . . . . 10
⊢ (( Nc 1c <c
(2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))
↔ ( Nc 1c ≤c
(2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))) |
31 | 21, 30 | sylibr 203 |
. . . . . . . . 9
⊢ ( Nc 1c ≤c
(2c ↑c Tc M)
→ ( Nc 1c <c
(2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))) |
32 | | ce2t 6236 |
. . . . . . . . . . . 12
⊢ (M ∈ NC → (2c
↑c Tc M) ∈ NC ) |
33 | | nchoicelem8 6297 |
. . . . . . . . . . . 12
⊢ (( ≤c
We NC ∧ (2c ↑c
Tc M) ∈ NC ) → (¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC ↔
Nc 1c <c
(2c ↑c Tc M))) |
34 | 32, 33 | sylan2 460 |
. . . . . . . . . . 11
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
((2c ↑c Tc M)
↑c 0c) ∈ NC ↔ Nc 1c <c
(2c ↑c Tc M))) |
35 | | nchoicelem3 6292 |
. . . . . . . . . . . . . . . 16
⊢
(((2c ↑c Tc M)
∈ NC ∧ ¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC ) → (
Spac ‘(2c
↑c Tc M)) = {(2c
↑c Tc M)}) |
36 | 35 | nceqd 6111 |
. . . . . . . . . . . . . . 15
⊢
(((2c ↑c Tc M)
∈ NC ∧ ¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC ) →
Nc ( Spac
‘(2c ↑c Tc M)) =
Nc {(2c
↑c Tc M)}) |
37 | | ovex 5552 |
. . . . . . . . . . . . . . . 16
⊢
(2c ↑c Tc M)
∈ V |
38 | 37 | df1c3 6141 |
. . . . . . . . . . . . . . 15
⊢
1c = Nc
{(2c ↑c Tc M)} |
39 | 36, 38 | syl6eqr 2403 |
. . . . . . . . . . . . . 14
⊢
(((2c ↑c Tc M)
∈ NC ∧ ¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC ) →
Nc ( Spac
‘(2c ↑c Tc M)) =
1c) |
40 | 39 | ex 423 |
. . . . . . . . . . . . 13
⊢
((2c ↑c Tc M)
∈ NC →
(¬ ((2c ↑c Tc M)
↑c 0c) ∈ NC → Nc ( Spac
‘(2c ↑c Tc M)) =
1c)) |
41 | 32, 40 | syl 15 |
. . . . . . . . . . . 12
⊢ (M ∈ NC → (¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC →
Nc ( Spac
‘(2c ↑c Tc M)) =
1c)) |
42 | 41 | adantl 452 |
. . . . . . . . . . 11
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
((2c ↑c Tc M)
↑c 0c) ∈ NC → Nc ( Spac
‘(2c ↑c Tc M)) =
1c)) |
43 | 34, 42 | sylbird 226 |
. . . . . . . . . 10
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c <c
(2c ↑c Tc M)
→ Nc ( Spac ‘(2c
↑c Tc M)) = 1c)) |
44 | | nclecid 6198 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( Nc 1c ∈ NC → Nc 1c ≤c Nc 1c) |
45 | 4, 44 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ Nc 1c ≤c Nc 1c |
46 | | ce0lenc1 6240 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( Nc 1c ∈ NC → (( Nc 1c ↑c
0c) ∈ NC ↔ Nc
1c ≤c Nc
1c)) |
47 | 4, 46 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (( Nc 1c ↑c
0c) ∈ NC ↔ Nc
1c ≤c Nc
1c) |
48 | 45, 47 | mpbir 200 |
. . . . . . . . . . . . . . . . 17
⊢ ( Nc 1c ↑c
0c) ∈ NC |
49 | | ce2lt 6221 |
. . . . . . . . . . . . . . . . 17
⊢ (( Nc 1c ∈ NC ∧ ( Nc
1c ↑c 0c) ∈ NC ) → Nc 1c <c
(2c ↑c Nc
1c)) |
50 | 4, 48, 49 | mp2an 653 |
. . . . . . . . . . . . . . . 16
⊢ Nc 1c <c
(2c ↑c Nc
1c) |
51 | | 2nnc 6168 |
. . . . . . . . . . . . . . . . . 18
⊢
2c ∈ Nn |
52 | | ceclnn1 6190 |
. . . . . . . . . . . . . . . . . 18
⊢
((2c ∈ Nn ∧ Nc 1c ∈ NC ∧ ( Nc
1c ↑c 0c) ∈ NC ) →
(2c ↑c Nc
1c) ∈ NC ) |
53 | 51, 4, 48, 52 | mp3an 1277 |
. . . . . . . . . . . . . . . . 17
⊢
(2c ↑c Nc 1c) ∈ NC |
54 | | nchoicelem8 6297 |
. . . . . . . . . . . . . . . . 17
⊢ (( ≤c
We NC ∧ (2c ↑c
Nc 1c) ∈ NC ) → (¬
((2c ↑c Nc 1c) ↑c
0c) ∈ NC ↔ Nc
1c <c (2c
↑c Nc
1c))) |
55 | 53, 54 | mpan2 652 |
. . . . . . . . . . . . . . . 16
⊢ ( ≤c
We NC → (¬
((2c ↑c Nc 1c) ↑c
0c) ∈ NC ↔ Nc
1c <c (2c
↑c Nc
1c))) |
56 | 50, 55 | mpbiri 224 |
. . . . . . . . . . . . . . 15
⊢ ( ≤c
We NC → ¬
((2c ↑c Nc 1c) ↑c
0c) ∈ NC ) |
57 | | nchoicelem3 6292 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2c ↑c Nc 1c) ∈ NC ∧ ¬ ((2c
↑c Nc 1c)
↑c 0c) ∈ NC ) → ( Spac ‘(2c
↑c Nc
1c)) = {(2c ↑c Nc 1c)}) |
58 | 57 | nceqd 6111 |
. . . . . . . . . . . . . . . . 17
⊢
(((2c ↑c Nc 1c) ∈ NC ∧ ¬ ((2c
↑c Nc 1c)
↑c 0c) ∈ NC ) → Nc ( Spac
‘(2c ↑c Nc 1c)) = Nc {(2c ↑c
Nc 1c)}) |
59 | | ovex 5552 |
. . . . . . . . . . . . . . . . . 18
⊢
(2c ↑c Nc 1c) ∈ V |
60 | 59 | df1c3 6141 |
. . . . . . . . . . . . . . . . 17
⊢
1c = Nc
{(2c ↑c Nc 1c)} |
61 | 58, 60 | syl6eqr 2403 |
. . . . . . . . . . . . . . . 16
⊢
(((2c ↑c Nc 1c) ∈ NC ∧ ¬ ((2c
↑c Nc 1c)
↑c 0c) ∈ NC ) → Nc ( Spac
‘(2c ↑c Nc 1c)) =
1c) |
62 | 53, 61 | mpan 651 |
. . . . . . . . . . . . . . 15
⊢ (¬
((2c ↑c Nc 1c) ↑c
0c) ∈ NC → Nc ( Spac ‘(2c
↑c Nc
1c)) = 1c) |
63 | 56, 62 | syl 15 |
. . . . . . . . . . . . . 14
⊢ ( ≤c
We NC → Nc ( Spac
‘(2c ↑c Nc 1c)) =
1c) |
64 | 63 | addceq1d 4390 |
. . . . . . . . . . . . 13
⊢ ( ≤c
We NC → ( Nc ( Spac
‘(2c ↑c Nc 1c)) +c
1c) = (1c +c
1c)) |
65 | | nchoicelem7 6296 |
. . . . . . . . . . . . . 14
⊢ (( Nc 1c ∈ NC ∧ ( Nc
1c ↑c 0c) ∈ NC ) → Nc ( Spac
‘ Nc 1c) = ( Nc ( Spac
‘(2c ↑c Nc 1c)) +c
1c)) |
66 | 4, 48, 65 | mp2an 653 |
. . . . . . . . . . . . 13
⊢ Nc ( Spac
‘ Nc 1c) = ( Nc ( Spac
‘(2c ↑c Nc 1c)) +c
1c) |
67 | | 1p1e2c 6156 |
. . . . . . . . . . . . . 14
⊢
(1c +c 1c) =
2c |
68 | 67 | eqcomi 2357 |
. . . . . . . . . . . . 13
⊢
2c = (1c +c
1c) |
69 | 64, 66, 68 | 3eqtr4g 2410 |
. . . . . . . . . . . 12
⊢ ( ≤c
We NC → Nc ( Spac
‘ Nc 1c) =
2c) |
70 | | fveq2 5329 |
. . . . . . . . . . . . . 14
⊢ ( Nc 1c = (2c
↑c Tc M) → ( Spac ‘ Nc
1c) = ( Spac
‘(2c ↑c Tc M))) |
71 | 70 | nceqd 6111 |
. . . . . . . . . . . . 13
⊢ ( Nc 1c = (2c
↑c Tc M) → Nc ( Spac ‘ Nc
1c) = Nc ( Spac ‘(2c
↑c Tc M))) |
72 | 71 | eqeq1d 2361 |
. . . . . . . . . . . 12
⊢ ( Nc 1c = (2c
↑c Tc M) → ( Nc ( Spac ‘ Nc
1c) = 2c ↔ Nc ( Spac
‘(2c ↑c Tc M)) =
2c)) |
73 | 69, 72 | syl5ibcom 211 |
. . . . . . . . . . 11
⊢ ( ≤c
We NC → ( Nc 1c = (2c
↑c Tc M) → Nc ( Spac ‘(2c
↑c Tc M)) = 2c)) |
74 | 73 | adantr 451 |
. . . . . . . . . 10
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c = (2c
↑c Tc M) → Nc ( Spac ‘(2c
↑c Tc M)) = 2c)) |
75 | 43, 74 | orim12d 811 |
. . . . . . . . 9
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (( Nc 1c <c
(2c ↑c Tc M)
∨ Nc
1c = (2c ↑c Tc M))
→ ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) |
76 | 31, 75 | syl5 28 |
. . . . . . . 8
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c ≤c
(2c ↑c Tc M)
→ ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) |
77 | 20, 76 | syl5bi 208 |
. . . . . . 7
⊢ (( ≤c
We NC ∧ M ∈ NC ) →
((2c ↑c Nc ℘11c)
≤c (2c ↑c Tc M)
→ ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) |
78 | 18, 77 | syld 40 |
. . . . . 6
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc ℘11c
≤c Tc M → ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) |
79 | 9, 78 | syl5bi 208 |
. . . . 5
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Tc Nc
1c ≤c Tc M
→ ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) |
80 | 7, 79 | sylbid 206 |
. . . 4
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c ≤c M → ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) |
81 | | addceq1 4384 |
. . . . 5
⊢ ( Nc ( Spac
‘(2c ↑c Tc M)) =
1c → ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c
1c)) |
82 | | addceq1 4384 |
. . . . 5
⊢ ( Nc ( Spac
‘(2c ↑c Tc M)) =
2c → ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c)) |
83 | 81, 82 | orim12i 502 |
. . . 4
⊢ (( Nc ( Spac
‘(2c ↑c Tc M)) =
1c ∨ Nc ( Spac
‘(2c ↑c Tc M)) =
2c) → (( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c 1c) ∨ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c))) |
84 | 2, 80, 83 | syl56 30 |
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c <c M → (( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c 1c) ∨ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c)))) |
85 | | nchoicelem8 6297 |
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
(M ↑c
0c) ∈ NC ↔ Nc
1c <c M)) |
86 | | nchoicelem7 6296 |
. . . . . . 7
⊢ (( Tc M
∈ NC ∧ ( Tc
M ↑c
0c) ∈ NC ) → Nc ( Spac ‘ Tc M) = (
Nc ( Spac
‘(2c ↑c Tc M))
+c 1c)) |
87 | 10, 11, 86 | syl2anc 642 |
. . . . . 6
⊢ (M ∈ NC → Nc ( Spac ‘ Tc M) = (
Nc ( Spac
‘(2c ↑c Tc M))
+c 1c)) |
88 | 68 | a1i 10 |
. . . . . 6
⊢ (M ∈ NC → 2c = (1c
+c 1c)) |
89 | 87, 88 | eqeq12d 2367 |
. . . . 5
⊢ (M ∈ NC → ( Nc ( Spac ‘ Tc M) =
2c ↔ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c
1c))) |
90 | | 2p1e3c 6157 |
. . . . . . . 8
⊢
(2c +c 1c) =
3c |
91 | 90 | eqcomi 2357 |
. . . . . . 7
⊢
3c = (2c +c
1c) |
92 | 91 | a1i 10 |
. . . . . 6
⊢ (M ∈ NC → 3c = (2c
+c 1c)) |
93 | 87, 92 | eqeq12d 2367 |
. . . . 5
⊢ (M ∈ NC → ( Nc ( Spac ‘ Tc M) =
3c ↔ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c))) |
94 | 89, 93 | orbi12d 690 |
. . . 4
⊢ (M ∈ NC → (( Nc ( Spac ‘ Tc M) =
2c ∨ Nc ( Spac
‘ Tc M) = 3c) ↔ (( Nc ( Spac
‘(2c ↑c Tc M))
+c 1c) = (1c
+c 1c) ∨ (
Nc ( Spac
‘(2c ↑c Tc M))
+c 1c) = (2c
+c 1c)))) |
95 | 94 | adantl 452 |
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (( Nc ( Spac
‘ Tc M) = 2c
∨ Nc ( Spac ‘ Tc M) =
3c) ↔ (( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c 1c) ∨ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c)))) |
96 | 84, 85, 95 | 3imtr4d 259 |
. 2
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
(M ↑c
0c) ∈ NC → ( Nc ( Spac ‘ Tc M) =
2c ∨ Nc ( Spac
‘ Tc M) = 3c))) |
97 | 96 | 3impia 1148 |
1
⊢ (( ≤c
We NC ∧ M ∈ NC ∧ ¬ (M
↑c 0c) ∈ NC ) → ( Nc ( Spac
‘ Tc M) = 2c
∨ Nc ( Spac ‘ Tc M) =
3c)) |