Proof of Theorem nchoicelem9
| Step | Hyp | Ref
 | Expression | 
| 1 |   | brltc 6115 | 
. . . . 5
⊢ ( Nc 1c <c M ↔ ( Nc
1c ≤c M
∧ Nc
1c ≠ M)) | 
| 2 | 1 | simplbi 446 | 
. . . 4
⊢ ( Nc 1c <c M → Nc
1c ≤c M) | 
| 3 |   | 1cex 4143 | 
. . . . . . . 8
⊢
1c ∈
V | 
| 4 | 3 | ncelncsi 6122 | 
. . . . . . 7
⊢  Nc 1c ∈ NC | 
| 5 |   | tlecg 6231 | 
. . . . . . 7
⊢ (( Nc 1c ∈ NC ∧ M ∈ NC ) → ( Nc 1c ≤c M ↔ Tc
Nc 1c ≤c Tc M)) | 
| 6 | 4, 5 | mpan 651 | 
. . . . . 6
⊢ (M ∈ NC → ( Nc
1c ≤c M
↔ Tc Nc 1c ≤c Tc M)) | 
| 7 | 6 | adantl 452 | 
. . . . 5
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c ≤c M ↔ Tc
Nc 1c ≤c Tc M)) | 
| 8 |   | tcnc1c 6228 | 
. . . . . . 7
⊢  Tc Nc
1c = Nc ℘11c | 
| 9 | 8 | breq1i 4647 | 
. . . . . 6
⊢ ( Tc Nc
1c ≤c Tc M
↔ Nc ℘11c
≤c Tc M) | 
| 10 |   | tccl 6161 | 
. . . . . . . . 9
⊢ (M ∈ NC → Tc
M ∈ NC ) | 
| 11 |   | te0c 6238 | 
. . . . . . . . 9
⊢ (M ∈ NC → ( Tc
M ↑c
0c) ∈ NC ) | 
| 12 | 3 | pw1ex 4304 | 
. . . . . . . . . . 11
⊢ ℘11c ∈ V | 
| 13 | 12 | ncelncsi 6122 | 
. . . . . . . . . 10
⊢  Nc ℘11c ∈ NC | 
| 14 |   | ce2le 6234 | 
. . . . . . . . . . 11
⊢ ((( Nc ℘11c ∈ NC ∧ Tc
M ∈ NC ∧ ( Tc M
↑c 0c) ∈ NC ) ∧ Nc ℘11c
≤c Tc M) → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M)) | 
| 15 | 14 | ex 423 | 
. . . . . . . . . 10
⊢ (( Nc ℘11c ∈ NC ∧ Tc
M ∈ NC ∧ ( Tc M
↑c 0c) ∈ NC ) → ( Nc ℘11c
≤c Tc M → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M))) | 
| 16 | 13, 15 | mp3an1 1264 | 
. . . . . . . . 9
⊢ (( Tc M
∈ NC ∧ ( Tc
M ↑c
0c) ∈ NC ) → ( Nc ℘11c
≤c Tc M → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M))) | 
| 17 | 10, 11, 16 | syl2anc 642 | 
. . . . . . . 8
⊢ (M ∈ NC → ( Nc ℘11c
≤c Tc M → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M))) | 
| 18 | 17 | adantl 452 | 
. . . . . . 7
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc ℘11c
≤c Tc M → (2c
↑c Nc ℘11c)
≤c (2c ↑c Tc M))) | 
| 19 |   | ce2ncpw11c 6195 | 
. . . . . . . . 9
⊢
(2c ↑c Nc ℘11c) = Nc 1c | 
| 20 | 19 | breq1i 4647 | 
. . . . . . . 8
⊢
((2c ↑c Nc ℘11c)
≤c (2c ↑c Tc M)
↔ Nc 1c ≤c
(2c ↑c Tc M)) | 
| 21 |   | orc 374 | 
. . . . . . . . . 10
⊢ ( Nc 1c ≤c
(2c ↑c Tc M)
→ ( Nc 1c ≤c
(2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))) | 
| 22 |   | brltc 6115 | 
. . . . . . . . . . . 12
⊢ ( Nc 1c <c
(2c ↑c Tc M)
↔ ( Nc 1c ≤c
(2c ↑c Tc M)
∧ Nc
1c ≠ (2c ↑c Tc M))) | 
| 23 | 22 | orbi1i 506 | 
. . . . . . . . . . 11
⊢ (( Nc 1c <c
(2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))
↔ (( Nc 1c ≤c
(2c ↑c Tc M)
∧ Nc
1c ≠ (2c ↑c Tc M))
 ∨ Nc
1c = (2c ↑c Tc M))) | 
| 24 |   | pm2.1 406 | 
. . . . . . . . . . . . 13
⊢ (¬ Nc 1c = (2c
↑c Tc M)  ∨ Nc 1c = (2c
↑c Tc M)) | 
| 25 |   | df-ne 2519 | 
. . . . . . . . . . . . . 14
⊢ ( Nc 1c ≠ (2c
↑c Tc M) ↔ ¬ Nc
1c = (2c ↑c Tc M)) | 
| 26 | 25 | orbi1i 506 | 
. . . . . . . . . . . . 13
⊢ (( Nc 1c ≠ (2c
↑c Tc M)  ∨ Nc 1c = (2c
↑c Tc M)) ↔ (¬ Nc
1c = (2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))) | 
| 27 | 24, 26 | mpbir 200 | 
. . . . . . . . . . . 12
⊢ ( Nc 1c ≠ (2c
↑c Tc M)  ∨ Nc 1c = (2c
↑c Tc M)) | 
| 28 |   | ordir 835 | 
. . . . . . . . . . . 12
⊢ ((( Nc 1c ≤c
(2c ↑c Tc M)
∧ Nc
1c ≠ (2c ↑c Tc M))
 ∨ Nc
1c = (2c ↑c Tc M))
↔ (( Nc 1c ≤c
(2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))
∧ ( Nc
1c ≠ (2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M)))) | 
| 29 | 27, 28 | mpbiran2 885 | 
. . . . . . . . . . 11
⊢ ((( Nc 1c ≤c
(2c ↑c Tc M)
∧ Nc
1c ≠ (2c ↑c Tc M))
 ∨ Nc
1c = (2c ↑c Tc M))
↔ ( Nc 1c ≤c
(2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))) | 
| 30 | 23, 29 | bitri 240 | 
. . . . . . . . . 10
⊢ (( Nc 1c <c
(2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))
↔ ( Nc 1c ≤c
(2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))) | 
| 31 | 21, 30 | sylibr 203 | 
. . . . . . . . 9
⊢ ( Nc 1c ≤c
(2c ↑c Tc M)
→ ( Nc 1c <c
(2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))) | 
| 32 |   | ce2t 6236 | 
. . . . . . . . . . . 12
⊢ (M ∈ NC → (2c
↑c Tc M) ∈ NC ) | 
| 33 |   | nchoicelem8 6297 | 
. . . . . . . . . . . 12
⊢ (( ≤c
We NC ∧ (2c ↑c
Tc M) ∈ NC ) → (¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC ↔
Nc 1c <c
(2c ↑c Tc M))) | 
| 34 | 32, 33 | sylan2 460 | 
. . . . . . . . . . 11
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
((2c ↑c Tc M)
↑c 0c) ∈ NC ↔ Nc 1c <c
(2c ↑c Tc M))) | 
| 35 |   | nchoicelem3 6292 | 
. . . . . . . . . . . . . . . 16
⊢
(((2c ↑c Tc M)
∈ NC ∧ ¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC ) → (
Spac ‘(2c
↑c Tc M)) = {(2c
↑c Tc M)}) | 
| 36 | 35 | nceqd 6111 | 
. . . . . . . . . . . . . . 15
⊢
(((2c ↑c Tc M)
∈ NC ∧ ¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC ) →
Nc ( Spac
‘(2c ↑c Tc M)) =
Nc {(2c
↑c Tc M)}) | 
| 37 |   | ovex 5552 | 
. . . . . . . . . . . . . . . 16
⊢
(2c ↑c Tc M)
∈ V | 
| 38 | 37 | df1c3 6141 | 
. . . . . . . . . . . . . . 15
⊢
1c = Nc
{(2c ↑c Tc M)} | 
| 39 | 36, 38 | syl6eqr 2403 | 
. . . . . . . . . . . . . 14
⊢
(((2c ↑c Tc M)
∈ NC ∧ ¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC ) →
Nc ( Spac
‘(2c ↑c Tc M)) =
1c) | 
| 40 | 39 | ex 423 | 
. . . . . . . . . . . . 13
⊢
((2c ↑c Tc M)
∈ NC →
(¬ ((2c ↑c Tc M)
↑c 0c) ∈ NC → Nc ( Spac
‘(2c ↑c Tc M)) =
1c)) | 
| 41 | 32, 40 | syl 15 | 
. . . . . . . . . . . 12
⊢ (M ∈ NC → (¬ ((2c
↑c Tc M) ↑c 0c)
∈ NC →
Nc ( Spac
‘(2c ↑c Tc M)) =
1c)) | 
| 42 | 41 | adantl 452 | 
. . . . . . . . . . 11
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
((2c ↑c Tc M)
↑c 0c) ∈ NC → Nc ( Spac
‘(2c ↑c Tc M)) =
1c)) | 
| 43 | 34, 42 | sylbird 226 | 
. . . . . . . . . 10
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c <c
(2c ↑c Tc M)
→ Nc ( Spac ‘(2c
↑c Tc M)) = 1c)) | 
| 44 |   | nclecid 6198 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ( Nc 1c ∈ NC → Nc 1c ≤c Nc 1c) | 
| 45 | 4, 44 | ax-mp 5 | 
. . . . . . . . . . . . . . . . . 18
⊢  Nc 1c ≤c Nc 1c | 
| 46 |   | ce0lenc1 6240 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ( Nc 1c ∈ NC → (( Nc 1c ↑c
0c) ∈ NC ↔ Nc
1c ≤c Nc
1c)) | 
| 47 | 4, 46 | ax-mp 5 | 
. . . . . . . . . . . . . . . . . 18
⊢ (( Nc 1c ↑c
0c) ∈ NC ↔ Nc
1c ≤c Nc
1c) | 
| 48 | 45, 47 | mpbir 200 | 
. . . . . . . . . . . . . . . . 17
⊢ ( Nc 1c ↑c
0c) ∈ NC | 
| 49 |   | ce2lt 6221 | 
. . . . . . . . . . . . . . . . 17
⊢ (( Nc 1c ∈ NC ∧ ( Nc
1c ↑c 0c) ∈ NC ) → Nc 1c <c
(2c ↑c Nc
1c)) | 
| 50 | 4, 48, 49 | mp2an 653 | 
. . . . . . . . . . . . . . . 16
⊢  Nc 1c <c
(2c ↑c Nc
1c) | 
| 51 |   | 2nnc 6168 | 
. . . . . . . . . . . . . . . . . 18
⊢
2c ∈ Nn | 
| 52 |   | ceclnn1 6190 | 
. . . . . . . . . . . . . . . . . 18
⊢
((2c ∈ Nn ∧ Nc 1c ∈ NC ∧ ( Nc
1c ↑c 0c) ∈ NC ) →
(2c ↑c Nc
1c) ∈ NC ) | 
| 53 | 51, 4, 48, 52 | mp3an 1277 | 
. . . . . . . . . . . . . . . . 17
⊢
(2c ↑c Nc 1c) ∈ NC | 
| 54 |   | nchoicelem8 6297 | 
. . . . . . . . . . . . . . . . 17
⊢ (( ≤c
We NC ∧ (2c ↑c
Nc 1c) ∈ NC ) → (¬
((2c ↑c Nc 1c) ↑c
0c) ∈ NC ↔ Nc
1c <c (2c
↑c Nc
1c))) | 
| 55 | 53, 54 | mpan2 652 | 
. . . . . . . . . . . . . . . 16
⊢ ( ≤c
We NC → (¬
((2c ↑c Nc 1c) ↑c
0c) ∈ NC ↔ Nc
1c <c (2c
↑c Nc
1c))) | 
| 56 | 50, 55 | mpbiri 224 | 
. . . . . . . . . . . . . . 15
⊢ ( ≤c
We NC → ¬
((2c ↑c Nc 1c) ↑c
0c) ∈ NC ) | 
| 57 |   | nchoicelem3 6292 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((2c ↑c Nc 1c) ∈ NC ∧ ¬ ((2c
↑c Nc 1c)
↑c 0c) ∈ NC ) → ( Spac ‘(2c
↑c Nc
1c)) = {(2c ↑c Nc 1c)}) | 
| 58 | 57 | nceqd 6111 | 
. . . . . . . . . . . . . . . . 17
⊢
(((2c ↑c Nc 1c) ∈ NC ∧ ¬ ((2c
↑c Nc 1c)
↑c 0c) ∈ NC ) → Nc ( Spac
‘(2c ↑c Nc 1c)) = Nc {(2c ↑c
Nc 1c)}) | 
| 59 |   | ovex 5552 | 
. . . . . . . . . . . . . . . . . 18
⊢
(2c ↑c Nc 1c) ∈ V | 
| 60 | 59 | df1c3 6141 | 
. . . . . . . . . . . . . . . . 17
⊢
1c = Nc
{(2c ↑c Nc 1c)} | 
| 61 | 58, 60 | syl6eqr 2403 | 
. . . . . . . . . . . . . . . 16
⊢
(((2c ↑c Nc 1c) ∈ NC ∧ ¬ ((2c
↑c Nc 1c)
↑c 0c) ∈ NC ) → Nc ( Spac
‘(2c ↑c Nc 1c)) =
1c) | 
| 62 | 53, 61 | mpan 651 | 
. . . . . . . . . . . . . . 15
⊢ (¬
((2c ↑c Nc 1c) ↑c
0c) ∈ NC → Nc ( Spac ‘(2c
↑c Nc
1c)) = 1c) | 
| 63 | 56, 62 | syl 15 | 
. . . . . . . . . . . . . 14
⊢ ( ≤c
We NC → Nc ( Spac
‘(2c ↑c Nc 1c)) =
1c) | 
| 64 | 63 | addceq1d 4390 | 
. . . . . . . . . . . . 13
⊢ ( ≤c
We NC → ( Nc ( Spac
‘(2c ↑c Nc 1c)) +c
1c) = (1c +c
1c)) | 
| 65 |   | nchoicelem7 6296 | 
. . . . . . . . . . . . . 14
⊢ (( Nc 1c ∈ NC ∧ ( Nc
1c ↑c 0c) ∈ NC ) → Nc ( Spac
‘ Nc 1c) = ( Nc ( Spac
‘(2c ↑c Nc 1c)) +c
1c)) | 
| 66 | 4, 48, 65 | mp2an 653 | 
. . . . . . . . . . . . 13
⊢  Nc ( Spac
‘ Nc 1c) = ( Nc ( Spac
‘(2c ↑c Nc 1c)) +c
1c) | 
| 67 |   | 1p1e2c 6156 | 
. . . . . . . . . . . . . 14
⊢
(1c +c 1c) =
2c | 
| 68 | 67 | eqcomi 2357 | 
. . . . . . . . . . . . 13
⊢
2c = (1c +c
1c) | 
| 69 | 64, 66, 68 | 3eqtr4g 2410 | 
. . . . . . . . . . . 12
⊢ ( ≤c
We NC → Nc ( Spac
‘ Nc 1c) =
2c) | 
| 70 |   | fveq2 5329 | 
. . . . . . . . . . . . . 14
⊢ ( Nc 1c = (2c
↑c Tc M) → ( Spac ‘ Nc
1c) = ( Spac
‘(2c ↑c Tc M))) | 
| 71 | 70 | nceqd 6111 | 
. . . . . . . . . . . . 13
⊢ ( Nc 1c = (2c
↑c Tc M) → Nc ( Spac ‘ Nc
1c) = Nc ( Spac ‘(2c
↑c Tc M))) | 
| 72 | 71 | eqeq1d 2361 | 
. . . . . . . . . . . 12
⊢ ( Nc 1c = (2c
↑c Tc M) → ( Nc ( Spac ‘ Nc
1c) = 2c ↔ Nc ( Spac
‘(2c ↑c Tc M)) =
2c)) | 
| 73 | 69, 72 | syl5ibcom 211 | 
. . . . . . . . . . 11
⊢ ( ≤c
We NC → ( Nc 1c = (2c
↑c Tc M) → Nc ( Spac ‘(2c
↑c Tc M)) = 2c)) | 
| 74 | 73 | adantr 451 | 
. . . . . . . . . 10
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c = (2c
↑c Tc M) → Nc ( Spac ‘(2c
↑c Tc M)) = 2c)) | 
| 75 | 43, 74 | orim12d 811 | 
. . . . . . . . 9
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (( Nc 1c <c
(2c ↑c Tc M)
 ∨ Nc
1c = (2c ↑c Tc M))
→ ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c 
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) | 
| 76 | 31, 75 | syl5 28 | 
. . . . . . . 8
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c ≤c
(2c ↑c Tc M)
→ ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c 
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) | 
| 77 | 20, 76 | syl5bi 208 | 
. . . . . . 7
⊢ (( ≤c
We NC ∧ M ∈ NC ) →
((2c ↑c Nc ℘11c)
≤c (2c ↑c Tc M)
→ ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c 
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) | 
| 78 | 18, 77 | syld 40 | 
. . . . . 6
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc ℘11c
≤c Tc M → ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c 
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) | 
| 79 | 9, 78 | syl5bi 208 | 
. . . . 5
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Tc Nc
1c ≤c Tc M
→ ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c 
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) | 
| 80 | 7, 79 | sylbid 206 | 
. . . 4
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c ≤c M → ( Nc ( Spac ‘(2c
↑c Tc M)) = 1c 
∨ Nc ( Spac ‘(2c
↑c Tc M)) = 2c))) | 
| 81 |   | addceq1 4384 | 
. . . . 5
⊢ ( Nc ( Spac
‘(2c ↑c Tc M)) =
1c → ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c
1c)) | 
| 82 |   | addceq1 4384 | 
. . . . 5
⊢ ( Nc ( Spac
‘(2c ↑c Tc M)) =
2c → ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c)) | 
| 83 | 81, 82 | orim12i 502 | 
. . . 4
⊢ (( Nc ( Spac
‘(2c ↑c Tc M)) =
1c  ∨ Nc ( Spac
‘(2c ↑c Tc M)) =
2c) → (( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c 1c)  ∨ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c))) | 
| 84 | 2, 80, 83 | syl56 30 | 
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc 1c <c M → (( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c 1c)  ∨ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c)))) | 
| 85 |   | nchoicelem8 6297 | 
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
(M ↑c
0c) ∈ NC ↔ Nc
1c <c M)) | 
| 86 |   | nchoicelem7 6296 | 
. . . . . . 7
⊢ (( Tc M
∈ NC ∧ ( Tc
M ↑c
0c) ∈ NC ) → Nc ( Spac ‘ Tc M) = (
Nc ( Spac
‘(2c ↑c Tc M))
+c 1c)) | 
| 87 | 10, 11, 86 | syl2anc 642 | 
. . . . . 6
⊢ (M ∈ NC → Nc ( Spac ‘ Tc M) = (
Nc ( Spac
‘(2c ↑c Tc M))
+c 1c)) | 
| 88 | 68 | a1i 10 | 
. . . . . 6
⊢ (M ∈ NC → 2c = (1c
+c 1c)) | 
| 89 | 87, 88 | eqeq12d 2367 | 
. . . . 5
⊢ (M ∈ NC → ( Nc ( Spac ‘ Tc M) =
2c ↔ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c
1c))) | 
| 90 |   | 2p1e3c 6157 | 
. . . . . . . 8
⊢
(2c +c 1c) =
3c | 
| 91 | 90 | eqcomi 2357 | 
. . . . . . 7
⊢
3c = (2c +c
1c) | 
| 92 | 91 | a1i 10 | 
. . . . . 6
⊢ (M ∈ NC → 3c = (2c
+c 1c)) | 
| 93 | 87, 92 | eqeq12d 2367 | 
. . . . 5
⊢ (M ∈ NC → ( Nc ( Spac ‘ Tc M) =
3c ↔ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c))) | 
| 94 | 89, 93 | orbi12d 690 | 
. . . 4
⊢ (M ∈ NC → (( Nc ( Spac ‘ Tc M) =
2c  ∨ Nc ( Spac
‘ Tc M) = 3c) ↔ (( Nc ( Spac
‘(2c ↑c Tc M))
+c 1c) = (1c
+c 1c)  ∨ (
Nc ( Spac
‘(2c ↑c Tc M))
+c 1c) = (2c
+c 1c)))) | 
| 95 | 94 | adantl 452 | 
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (( Nc ( Spac
‘ Tc M) = 2c 
∨ Nc ( Spac ‘ Tc M) =
3c) ↔ (( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(1c +c 1c)  ∨ ( Nc ( Spac ‘(2c
↑c Tc M)) +c 1c) =
(2c +c
1c)))) | 
| 96 | 84, 85, 95 | 3imtr4d 259 | 
. 2
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
(M ↑c
0c) ∈ NC → ( Nc ( Spac ‘ Tc M) =
2c  ∨ Nc ( Spac
‘ Tc M) = 3c))) | 
| 97 | 96 | 3impia 1148 | 
1
⊢ (( ≤c
We NC ∧ M ∈ NC ∧ ¬ (M
↑c 0c) ∈ NC ) → ( Nc ( Spac
‘ Tc M) = 2c 
∨ Nc ( Spac ‘ Tc M) =
3c)) |