New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > euor2 | GIF version |
Description: Introduce or eliminate a disjunct in a uniqueness quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
euor2 | ⊢ (¬ ∃xφ → (∃!x(φ ∨ ψ) ↔ ∃!xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 1732 | . . 3 ⊢ Ⅎx∃xφ | |
2 | 1 | nfn 1793 | . 2 ⊢ Ⅎx ¬ ∃xφ |
3 | 19.8a 1756 | . . . 4 ⊢ (φ → ∃xφ) | |
4 | 3 | con3i 127 | . . 3 ⊢ (¬ ∃xφ → ¬ φ) |
5 | orel1 371 | . . . 4 ⊢ (¬ φ → ((φ ∨ ψ) → ψ)) | |
6 | olc 373 | . . . 4 ⊢ (ψ → (φ ∨ ψ)) | |
7 | 5, 6 | impbid1 194 | . . 3 ⊢ (¬ φ → ((φ ∨ ψ) ↔ ψ)) |
8 | 4, 7 | syl 15 | . 2 ⊢ (¬ ∃xφ → ((φ ∨ ψ) ↔ ψ)) |
9 | 2, 8 | eubid 2211 | 1 ⊢ (¬ ∃xφ → (∃!x(φ ∨ ψ) ↔ ∃!xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∃wex 1541 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-or 359 df-tru 1319 df-ex 1542 df-nf 1545 df-eu 2208 |
This theorem is referenced by: reuun2 3539 |
Copyright terms: Public domain | W3C validator |