NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nnceleq GIF version

Theorem nnceleq 4431
Description: If two naturals have an element in common, then they are equal. (Contributed by SF, 13-Feb-2015.)
Assertion
Ref Expression
nnceleq (((M Nn N Nn ) (A M A N)) → M = N)

Proof of Theorem nnceleq
StepHypRef Expression
1 elin 3220 . . . 4 (A (MN) ↔ (A M A N))
2 n0i 3556 . . . 4 (A (MN) → ¬ (MN) = )
31, 2sylbir 204 . . 3 ((A M A N) → ¬ (MN) = )
43adantl 452 . 2 (((M Nn N Nn ) (A M A N)) → ¬ (MN) = )
5 nndisjeq 4430 . . 3 ((M Nn N Nn ) → ((MN) = M = N))
65adantr 451 . 2 (((M Nn N Nn ) (A M A N)) → ((MN) = M = N))
7 orel1 371 . 2 (¬ (MN) = → (((MN) = M = N) → M = N))
84, 6, 7sylc 56 1 (((M Nn N Nn ) (A M A N)) → M = N)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   wa 358   = wceq 1642   wcel 1710  cin 3209  c0 3551   Nn cnnc 4374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-0c 4378  df-addc 4379  df-nnc 4380
This theorem is referenced by:  prepeano4  4452  vfinnc  4472  ncfindi  4476  ncfinsn  4477  ncfineleq  4478  nnpw1ex  4485  tfin11  4494  tfinpw1  4495  ncfintfin  4496  tfindi  4497  tfin0c  4498  tfinsuc  4499  sfin112  4530  vfintle  4547  vfinspsslem1  4551  vfinncsp  4555
  Copyright terms: Public domain W3C validator