New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nnceleq | GIF version |
Description: If two naturals have an element in common, then they are equal. (Contributed by SF, 13-Feb-2015.) |
Ref | Expression |
---|---|
nnceleq | ⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ A ∈ N)) → M = N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . . . 4 ⊢ (A ∈ (M ∩ N) ↔ (A ∈ M ∧ A ∈ N)) | |
2 | n0i 3556 | . . . 4 ⊢ (A ∈ (M ∩ N) → ¬ (M ∩ N) = ∅) | |
3 | 1, 2 | sylbir 204 | . . 3 ⊢ ((A ∈ M ∧ A ∈ N) → ¬ (M ∩ N) = ∅) |
4 | 3 | adantl 452 | . 2 ⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ A ∈ N)) → ¬ (M ∩ N) = ∅) |
5 | nndisjeq 4430 | . . 3 ⊢ ((M ∈ Nn ∧ N ∈ Nn ) → ((M ∩ N) = ∅ ∨ M = N)) | |
6 | 5 | adantr 451 | . 2 ⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ A ∈ N)) → ((M ∩ N) = ∅ ∨ M = N)) |
7 | orel1 371 | . 2 ⊢ (¬ (M ∩ N) = ∅ → (((M ∩ N) = ∅ ∨ M = N) → M = N)) | |
8 | 4, 6, 7 | sylc 56 | 1 ⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ A ∈ N)) → M = N) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∩ cin 3209 ∅c0 3551 Nn cnnc 4374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-0c 4378 df-addc 4379 df-nnc 4380 |
This theorem is referenced by: prepeano4 4452 vfinnc 4472 ncfindi 4476 ncfinsn 4477 ncfineleq 4478 nnpw1ex 4485 tfin11 4494 tfinpw1 4495 ncfintfin 4496 tfindi 4497 tfin0c 4498 tfinsuc 4499 sfin112 4530 vfintle 4547 vfinspsslem1 4551 vfinncsp 4555 |
Copyright terms: Public domain | W3C validator |