New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ord | GIF version |
Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
ord.1 | ⊢ (φ → (ψ ∨ χ)) |
Ref | Expression |
---|---|
ord | ⊢ (φ → (¬ ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord.1 | . 2 ⊢ (φ → (ψ ∨ χ)) | |
2 | df-or 359 | . 2 ⊢ ((ψ ∨ χ) ↔ (¬ ψ → χ)) | |
3 | 1, 2 | sylib 188 | 1 ⊢ (φ → (¬ ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: orcanai 879 oplem1 930 ecase23d 1285 19.33b 1608 eqsn 3868 nnsucelr 4429 lenltfin 4470 vfin1cltv 4548 phi011lem1 4599 foconst 5281 nceleq 6150 addceq0 6220 ncslemuc 6256 nchoicelem8 6297 |
Copyright terms: Public domain | W3C validator |