NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ord GIF version

Theorem ord 366
Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.)
Hypothesis
Ref Expression
ord.1 (φ → (ψ χ))
Assertion
Ref Expression
ord (φ → (¬ ψχ))

Proof of Theorem ord
StepHypRef Expression
1 ord.1 . 2 (φ → (ψ χ))
2 df-or 359 . 2 ((ψ χ) ↔ (¬ ψχ))
31, 2sylib 188 1 (φ → (¬ ψχ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  orcanai  879  oplem1  930  ecase23d  1285  19.33b  1608  eqsn  3868  nnsucelr  4429  lenltfin  4470  vfin1cltv  4548  phi011lem1  4599  foconst  5281  nceleq  6150  addceq0  6220  ncslemuc  6256  nchoicelem8  6297
  Copyright terms: Public domain W3C validator