NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.61d2 GIF version

Theorem pm2.61d2 152
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
pm2.61d2.1 (φ → (¬ ψχ))
pm2.61d2.2 (ψχ)
Assertion
Ref Expression
pm2.61d2 (φχ)

Proof of Theorem pm2.61d2
StepHypRef Expression
1 pm2.61d2.2 . . 3 (ψχ)
21a1i 10 . 2 (φ → (ψχ))
3 pm2.61d2.1 . 2 (φ → (¬ ψχ))
42, 3pm2.61d 150 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.61ii  157  jaoi  368  dvelimv  1939  nfald2  1972  nfsb4t  2080  nfsbd  2111  nfabd2  2508  dff3  5421
  Copyright terms: Public domain W3C validator