| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm2.61d2 | GIF version | ||
| Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm2.61d2.1 | ⊢ (φ → (¬ ψ → χ)) |
| pm2.61d2.2 | ⊢ (ψ → χ) |
| Ref | Expression |
|---|---|
| pm2.61d2 | ⊢ (φ → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61d2.2 | . . 3 ⊢ (ψ → χ) | |
| 2 | 1 | a1i 10 | . 2 ⊢ (φ → (ψ → χ)) |
| 3 | pm2.61d2.1 | . 2 ⊢ (φ → (¬ ψ → χ)) | |
| 4 | 2, 3 | pm2.61d 150 | 1 ⊢ (φ → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.61ii 157 jaoi 368 dvelimv 1939 nfald2 1972 nfsb4t 2080 nfsbd 2111 nfabd2 2508 dff3 5421 |
| Copyright terms: Public domain | W3C validator |