| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfabd2 | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfabd2.1 | ⊢ Ⅎyφ |
| nfabd2.2 | ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) |
| Ref | Expression |
|---|---|
| nfabd2 | ⊢ (φ → Ⅎx{y ∣ ψ}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 | . . . 4 ⊢ Ⅎz(φ ∧ ¬ ∀x x = y) | |
| 2 | df-clab 2340 | . . . . 5 ⊢ (z ∈ {y ∣ ψ} ↔ [z / y]ψ) | |
| 3 | nfabd2.1 | . . . . . . 7 ⊢ Ⅎyφ | |
| 4 | nfnae 1956 | . . . . . . 7 ⊢ Ⅎy ¬ ∀x x = y | |
| 5 | 3, 4 | nfan 1824 | . . . . . 6 ⊢ Ⅎy(φ ∧ ¬ ∀x x = y) |
| 6 | nfabd2.2 | . . . . . 6 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) | |
| 7 | 5, 6 | nfsbd 2111 | . . . . 5 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx[z / y]ψ) |
| 8 | 2, 7 | nfxfrd 1571 | . . . 4 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx z ∈ {y ∣ ψ}) |
| 9 | 1, 8 | nfcd 2485 | . . 3 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx{y ∣ ψ}) |
| 10 | 9 | ex 423 | . 2 ⊢ (φ → (¬ ∀x x = y → Ⅎx{y ∣ ψ})) |
| 11 | nfab1 2492 | . . 3 ⊢ Ⅎy{y ∣ ψ} | |
| 12 | eqidd 2354 | . . . 4 ⊢ (∀x x = y → {y ∣ ψ} = {y ∣ ψ}) | |
| 13 | 12 | drnfc1 2506 | . . 3 ⊢ (∀x x = y → (Ⅎx{y ∣ ψ} ↔ Ⅎy{y ∣ ψ})) |
| 14 | 11, 13 | mpbiri 224 | . 2 ⊢ (∀x x = y → Ⅎx{y ∣ ψ}) |
| 15 | 10, 14 | pm2.61d2 152 | 1 ⊢ (φ → Ⅎx{y ∣ ψ}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 |
| This theorem is referenced by: nfabd 2509 nfrab 2793 |
| Copyright terms: Public domain | W3C validator |