| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfald2 | GIF version | ||
| Description: Variation on nfald 1852 which adds the hypothesis that x and y are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfald2.1 | ⊢ Ⅎyφ |
| nfald2.2 | ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) |
| Ref | Expression |
|---|---|
| nfald2 | ⊢ (φ → Ⅎx∀yψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfald2.1 | . . . . 5 ⊢ Ⅎyφ | |
| 2 | nfnae 1956 | . . . . 5 ⊢ Ⅎy ¬ ∀x x = y | |
| 3 | 1, 2 | nfan 1824 | . . . 4 ⊢ Ⅎy(φ ∧ ¬ ∀x x = y) |
| 4 | nfald2.2 | . . . 4 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) | |
| 5 | 3, 4 | nfald 1852 | . . 3 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx∀yψ) |
| 6 | 5 | ex 423 | . 2 ⊢ (φ → (¬ ∀x x = y → Ⅎx∀yψ)) |
| 7 | nfa1 1788 | . . 3 ⊢ Ⅎy∀yψ | |
| 8 | biidd 228 | . . . 4 ⊢ (∀x x = y → (∀yψ ↔ ∀yψ)) | |
| 9 | 8 | drnf1 1969 | . . 3 ⊢ (∀x x = y → (Ⅎx∀yψ ↔ Ⅎy∀yψ)) |
| 10 | 7, 9 | mpbiri 224 | . 2 ⊢ (∀x x = y → Ⅎx∀yψ) |
| 11 | 6, 10 | pm2.61d2 152 | 1 ⊢ (φ → Ⅎx∀yψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: nfexd2 1973 dvelimf 1997 nfeud2 2216 nfrald 2666 nfiotad 4343 |
| Copyright terms: Public domain | W3C validator |