| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfsbd | GIF version | ||
| Description: Deduction version of nfsb 2109. (Contributed by NM, 15-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfsbd.1 | ⊢ Ⅎxφ |
| nfsbd.2 | ⊢ (φ → Ⅎzψ) |
| Ref | Expression |
|---|---|
| nfsbd | ⊢ (φ → Ⅎz[y / x]ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbd.1 | . . . 4 ⊢ Ⅎxφ | |
| 2 | nfsbd.2 | . . . 4 ⊢ (φ → Ⅎzψ) | |
| 3 | 1, 2 | alrimi 1765 | . . 3 ⊢ (φ → ∀xℲzψ) |
| 4 | nfsb4t 2080 | . . 3 ⊢ (∀xℲzψ → (¬ ∀z z = y → Ⅎz[y / x]ψ)) | |
| 5 | 3, 4 | syl 15 | . 2 ⊢ (φ → (¬ ∀z z = y → Ⅎz[y / x]ψ)) |
| 6 | a16nf 2051 | . 2 ⊢ (∀z z = y → Ⅎz[y / x]ψ) | |
| 7 | 5, 6 | pm2.61d2 152 | 1 ⊢ (φ → Ⅎz[y / x]ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 Ⅎwnf 1544 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: nfabd2 2508 |
| Copyright terms: Public domain | W3C validator |