NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.29 GIF version

Theorem r19.29 2755
Description: Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.29 ((x A φ x A ψ) → x A (φ ψ))

Proof of Theorem r19.29
StepHypRef Expression
1 pm3.2 434 . . . 4 (φ → (ψ → (φ ψ)))
21ralimi 2690 . . 3 (x A φx A (ψ → (φ ψ)))
3 rexim 2719 . . 3 (x A (ψ → (φ ψ)) → (x A ψx A (φ ψ)))
42, 3syl 15 . 2 (x A φ → (x A ψx A (φ ψ)))
54imp 418 1 ((x A φ x A ψ) → x A (φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620  df-rex 2621
This theorem is referenced by:  r19.29r  2756  fun11iun  5306  fmpt  5693
  Copyright terms: Public domain W3C validator