| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > r19.29 | GIF version | ||
| Description: Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.29 | ⊢ ((∀x ∈ A φ ∧ ∃x ∈ A ψ) → ∃x ∈ A (φ ∧ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 434 | . . . 4 ⊢ (φ → (ψ → (φ ∧ ψ))) | |
| 2 | 1 | ralimi 2690 | . . 3 ⊢ (∀x ∈ A φ → ∀x ∈ A (ψ → (φ ∧ ψ))) |
| 3 | rexim 2719 | . . 3 ⊢ (∀x ∈ A (ψ → (φ ∧ ψ)) → (∃x ∈ A ψ → ∃x ∈ A (φ ∧ ψ))) | |
| 4 | 2, 3 | syl 15 | . 2 ⊢ (∀x ∈ A φ → (∃x ∈ A ψ → ∃x ∈ A (φ ∧ ψ))) |
| 5 | 4 | imp 418 | 1 ⊢ ((∀x ∈ A φ ∧ ∃x ∈ A ψ) → ∃x ∈ A (φ ∧ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wral 2615 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: r19.29r 2756 fun11iun 5306 fmpt 5693 |
| Copyright terms: Public domain | W3C validator |