New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > map0e | GIF version |
Description: Set exponentiation with an empty exponent is the unit class of the empty set. (Contributed by set.mm contributors, 10-Dec-2003.) |
Ref | Expression |
---|---|
map0e.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
map0e | ⊢ (A ↑m ∅) = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fn0 5203 | . . . . 5 ⊢ (f Fn ∅ ↔ f = ∅) | |
2 | 1 | anbi1i 676 | . . . 4 ⊢ ((f Fn ∅ ∧ ran f ⊆ A) ↔ (f = ∅ ∧ ran f ⊆ A)) |
3 | df-f 4792 | . . . 4 ⊢ (f:∅–→A ↔ (f Fn ∅ ∧ ran f ⊆ A)) | |
4 | 0ss 3580 | . . . . . 6 ⊢ ∅ ⊆ A | |
5 | rneq 4957 | . . . . . . . 8 ⊢ (f = ∅ → ran f = ran ∅) | |
6 | rn0 4970 | . . . . . . . 8 ⊢ ran ∅ = ∅ | |
7 | 5, 6 | syl6eq 2401 | . . . . . . 7 ⊢ (f = ∅ → ran f = ∅) |
8 | 7 | sseq1d 3299 | . . . . . 6 ⊢ (f = ∅ → (ran f ⊆ A ↔ ∅ ⊆ A)) |
9 | 4, 8 | mpbiri 224 | . . . . 5 ⊢ (f = ∅ → ran f ⊆ A) |
10 | 9 | pm4.71i 613 | . . . 4 ⊢ (f = ∅ ↔ (f = ∅ ∧ ran f ⊆ A)) |
11 | 2, 3, 10 | 3bitr4i 268 | . . 3 ⊢ (f:∅–→A ↔ f = ∅) |
12 | 11 | abbii 2466 | . 2 ⊢ {f ∣ f:∅–→A} = {f ∣ f = ∅} |
13 | map0e.1 | . . 3 ⊢ A ∈ V | |
14 | 0ex 4111 | . . 3 ⊢ ∅ ∈ V | |
15 | 13, 14 | mapval 6012 | . 2 ⊢ (A ↑m ∅) = {f ∣ f:∅–→A} |
16 | df-sn 3742 | . 2 ⊢ {∅} = {f ∣ f = ∅} | |
17 | 12, 15, 16 | 3eqtr4i 2383 | 1 ⊢ (A ↑m ∅) = {∅} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 ⊆ wss 3258 ∅c0 3551 {csn 3738 ran crn 4774 Fn wfn 4777 –→wf 4778 (class class class)co 5526 ↑m cmap 6000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt2 5655 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-map 6002 |
This theorem is referenced by: map0 6026 ce0 6191 |
Copyright terms: Public domain | W3C validator |