NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orrd GIF version

Theorem orrd 367
Description: Deduce implication from disjunction. (Contributed by NM, 27-Nov-1995.)
Hypothesis
Ref Expression
orrd.1 (φ → (¬ ψχ))
Assertion
Ref Expression
orrd (φ → (ψ χ))

Proof of Theorem orrd
StepHypRef Expression
1 orrd.1 . 2 (φ → (¬ ψχ))
2 pm2.54 363 . 2 ((¬ ψχ) → (ψ χ))
31, 2syl 15 1 (φ → (ψ χ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  olc  373  orc  374  pm2.68  399  pm4.79  566  sspss  3369  pwpw0  3856  sssn  3865  pwsnALT  3883  unissint  3951  pwadjoin  4120  nndisjeq  4430  xpexr  5110  fvclss  5463  erdisj  5973
  Copyright terms: Public domain W3C validator