New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitrri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitri.1 | ⊢ (φ ↔ ψ) |
3bitri.2 | ⊢ (ψ ↔ χ) |
3bitri.3 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
3bitrri | ⊢ (θ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitri.3 | . 2 ⊢ (χ ↔ θ) | |
2 | 3bitri.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | 3bitri.2 | . . 3 ⊢ (ψ ↔ χ) | |
4 | 2, 3 | bitr2i 241 | . 2 ⊢ (χ ↔ φ) |
5 | 1, 4 | bitr3i 242 | 1 ⊢ (θ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: nbbn 347 pm5.17 858 dn1 932 sbralie 2849 reu8 3033 unass 3421 ssin 3478 difab 3524 iunss 4008 insklem 4305 eqpw1relk 4480 eqtfinrelk 4487 nnadjoin 4521 cnvuni 4896 dfco2 5081 resin 5308 dff1o6 5476 txpcofun 5804 releqel 5808 fnfullfunlem1 5857 ovcelem1 6172 tcfnex 6245 nclennlem1 6249 nnc3n3p1 6279 nchoicelem10 6299 nchoicelem16 6305 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |