NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3bitrri GIF version

Theorem 3bitrri 263
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitri.1 (φψ)
3bitri.2 (ψχ)
3bitri.3 (χθ)
Assertion
Ref Expression
3bitrri (θφ)

Proof of Theorem 3bitrri
StepHypRef Expression
1 3bitri.3 . 2 (χθ)
2 3bitri.1 . . 3 (φψ)
3 3bitri.2 . . 3 (ψχ)
42, 3bitr2i 241 . 2 (χφ)
51, 4bitr3i 242 1 (θφ)
Colors of variables: wff setvar class
Syntax hints:  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  nbbn  347  pm5.17  858  dn1  932  sbralie  2849  reu8  3033  unass  3421  ssin  3478  difab  3524  iunss  4008  insklem  4305  eqpw1relk  4480  eqtfinrelk  4487  nnadjoin  4521  cnvuni  4896  dfco2  5081  resin  5308  dff1o6  5476  txpcofun  5804  releqel  5808  fnfullfunlem1  5857  ovcelem1  6172  tcfnex  6245  nclennlem1  6249  nnc3n3p1  6279  nchoicelem10  6299  nchoicelem16  6305  fnfreclem1  6318
  Copyright terms: Public domain W3C validator