| Step | Hyp | Ref
| Expression |
| 1 | | ancom 437 |
. . . . 5
⊢ (((y ∈ A ∧ x ∈ ℘1B) ∧ x = {y}) ↔
(x = {y} ∧ (y ∈ A ∧ x ∈ ℘1B))) |
| 2 | | eleq1 2413 |
. . . . . . . . 9
⊢ (x = {y} →
(x ∈
℘1B ↔ {y}
∈ ℘1B)) |
| 3 | | snelpw1 4147 |
. . . . . . . . 9
⊢ ({y} ∈ ℘1B ↔ y ∈ B) |
| 4 | 2, 3 | syl6bb 252 |
. . . . . . . 8
⊢ (x = {y} →
(x ∈
℘1B ↔ y ∈ B)) |
| 5 | 4 | anbi2d 684 |
. . . . . . 7
⊢ (x = {y} →
((y ∈
A ∧
x ∈ ℘1B) ↔ (y
∈ A ∧ y ∈ B))) |
| 6 | | elin 3220 |
. . . . . . 7
⊢ (y ∈ (A ∩ B)
↔ (y ∈ A ∧ y ∈ B)) |
| 7 | 5, 6 | syl6bbr 254 |
. . . . . 6
⊢ (x = {y} →
((y ∈
A ∧
x ∈ ℘1B) ↔ y
∈ (A
∩ B))) |
| 8 | 7 | pm5.32ri 619 |
. . . . 5
⊢ (((y ∈ A ∧ x ∈ ℘1B) ∧ x = {y}) ↔
(y ∈
(A ∩ B) ∧ x = {y})) |
| 9 | | an12 772 |
. . . . 5
⊢ ((x = {y} ∧ (y ∈ A ∧ x ∈ ℘1B)) ↔ (y
∈ A ∧ (x = {y} ∧ x ∈ ℘1B))) |
| 10 | 1, 8, 9 | 3bitr3i 266 |
. . . 4
⊢ ((y ∈ (A ∩ B) ∧ x = {y}) ↔ (y
∈ A ∧ (x = {y} ∧ x ∈ ℘1B))) |
| 11 | 10 | rexbii2 2644 |
. . 3
⊢ (∃y ∈ (A ∩
B)x =
{y} ↔ ∃y ∈ A (x = {y} ∧ x ∈ ℘1B)) |
| 12 | | elpw1 4145 |
. . 3
⊢ (x ∈ ℘1(A ∩ B)
↔ ∃y ∈ (A ∩ B)x = {y}) |
| 13 | | elpw1 4145 |
. . . . 5
⊢ (x ∈ ℘1A ↔ ∃y ∈ A x = {y}) |
| 14 | 13 | anbi1i 676 |
. . . 4
⊢ ((x ∈ ℘1A ∧ x ∈ ℘1B) ↔ (∃y ∈ A x = {y} ∧ x ∈ ℘1B)) |
| 15 | | elin 3220 |
. . . 4
⊢ (x ∈ (℘1A ∩ ℘1B) ↔ (x
∈ ℘1A ∧ x ∈ ℘1B)) |
| 16 | | r19.41v 2765 |
. . . 4
⊢ (∃y ∈ A (x = {y} ∧ x ∈ ℘1B) ↔ (∃y ∈ A x = {y} ∧ x ∈ ℘1B)) |
| 17 | 14, 15, 16 | 3bitr4i 268 |
. . 3
⊢ (x ∈ (℘1A ∩ ℘1B) ↔ ∃y ∈ A (x = {y} ∧ x ∈ ℘1B)) |
| 18 | 11, 12, 17 | 3bitr4i 268 |
. 2
⊢ (x ∈ ℘1(A ∩ B)
↔ x ∈ (℘1A ∩ ℘1B)) |
| 19 | 18 | eqriv 2350 |
1
⊢ ℘1(A ∩ B) =
(℘1A ∩ ℘1B) |