New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elpw1 | GIF version |
Description: Membership in a unit power class. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
elpw1 | ⊢ (A ∈ ℘1B ↔ ∃x ∈ B A = {x}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw1 4138 | . . . 4 ⊢ ℘1B = (℘B ∩ 1c) | |
2 | 1 | eleq2i 2417 | . . 3 ⊢ (A ∈ ℘1B ↔ A ∈ (℘B ∩ 1c)) |
3 | elin 3220 | . . 3 ⊢ (A ∈ (℘B ∩ 1c) ↔ (A ∈ ℘B ∧ A ∈ 1c)) | |
4 | 2, 3 | bitri 240 | . 2 ⊢ (A ∈ ℘1B ↔ (A ∈ ℘B ∧ A ∈ 1c)) |
5 | el1c 4140 | . . . . 5 ⊢ (A ∈ 1c ↔ ∃x A = {x}) | |
6 | 5 | anbi2i 675 | . . . 4 ⊢ ((A ∈ ℘B ∧ A ∈ 1c) ↔ (A ∈ ℘B ∧ ∃x A = {x})) |
7 | 19.42v 1905 | . . . 4 ⊢ (∃x(A ∈ ℘B ∧ A = {x}) ↔ (A ∈ ℘B ∧ ∃x A = {x})) | |
8 | 6, 7 | bitr4i 243 | . . 3 ⊢ ((A ∈ ℘B ∧ A ∈ 1c) ↔ ∃x(A ∈ ℘B ∧ A = {x})) |
9 | eleq1 2413 | . . . . . . 7 ⊢ (A = {x} → (A ∈ ℘B ↔ {x} ∈ ℘B)) | |
10 | snex 4112 | . . . . . . . . 9 ⊢ {x} ∈ V | |
11 | 10 | elpw 3729 | . . . . . . . 8 ⊢ ({x} ∈ ℘B ↔ {x} ⊆ B) |
12 | vex 2863 | . . . . . . . . 9 ⊢ x ∈ V | |
13 | 12 | snss 3839 | . . . . . . . 8 ⊢ (x ∈ B ↔ {x} ⊆ B) |
14 | 11, 13 | bitr4i 243 | . . . . . . 7 ⊢ ({x} ∈ ℘B ↔ x ∈ B) |
15 | 9, 14 | syl6bb 252 | . . . . . 6 ⊢ (A = {x} → (A ∈ ℘B ↔ x ∈ B)) |
16 | 15 | pm5.32ri 619 | . . . . 5 ⊢ ((A ∈ ℘B ∧ A = {x}) ↔ (x ∈ B ∧ A = {x})) |
17 | 16 | exbii 1582 | . . . 4 ⊢ (∃x(A ∈ ℘B ∧ A = {x}) ↔ ∃x(x ∈ B ∧ A = {x})) |
18 | df-rex 2621 | . . . 4 ⊢ (∃x ∈ B A = {x} ↔ ∃x(x ∈ B ∧ A = {x})) | |
19 | 17, 18 | bitr4i 243 | . . 3 ⊢ (∃x(A ∈ ℘B ∧ A = {x}) ↔ ∃x ∈ B A = {x}) |
20 | 8, 19 | bitri 240 | . 2 ⊢ ((A ∈ ℘B ∧ A ∈ 1c) ↔ ∃x ∈ B A = {x}) |
21 | 4, 20 | bitri 240 | 1 ⊢ (A ∈ ℘1B ↔ ∃x ∈ B A = {x}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 ∩ cin 3209 ⊆ wss 3258 ℘cpw 3723 {csn 3738 1cc1c 4135 ℘1cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: elpw12 4146 snelpw1 4147 elpw11c 4148 elpw121c 4149 elpw131c 4150 elpw141c 4151 elpw151c 4152 elpw161c 4153 elpw171c 4154 elpw181c 4155 elpw191c 4156 elpw1101c 4157 elpw1111c 4158 pw1un 4164 pw1in 4165 pw1sn 4166 pw1disj 4168 df1c2 4169 dfpw12 4302 unipw1 4326 vfinspss 4552 vfinncsp 4555 elimapw1 4945 elimapw12 4946 elimapw13 4947 dmsi 5520 pw1fnex 5853 enpw1 6063 enpw1pw 6076 nenpw1pwlem2 6086 scancan 6332 |
Copyright terms: Public domain | W3C validator |