Step | Hyp | Ref
| Expression |
1 | | eldifsn 3840 |
. . . . 5
⊢ (x ∈ ((A ∪ {B})
∖ {B})
↔ (x ∈ (A ∪
{B}) ∧
x ≠ B)) |
2 | | elun 3221 |
. . . . . . 7
⊢ (x ∈ (A ∪ {B})
↔ (x ∈ A ∨ x ∈ {B})) |
3 | | elsn 3749 |
. . . . . . . 8
⊢ (x ∈ {B} ↔ x =
B) |
4 | 3 | orbi2i 505 |
. . . . . . 7
⊢ ((x ∈ A ∨ x ∈ {B}) ↔ (x
∈ A ∨ x = B)) |
5 | 2, 4 | bitri 240 |
. . . . . 6
⊢ (x ∈ (A ∪ {B})
↔ (x ∈ A ∨ x = B)) |
6 | | df-ne 2519 |
. . . . . 6
⊢ (x ≠ B ↔
¬ x = B) |
7 | 5, 6 | anbi12i 678 |
. . . . 5
⊢ ((x ∈ (A ∪ {B})
∧ x ≠
B) ↔ ((x ∈ A ∨ x = B) ∧ ¬ x =
B)) |
8 | | pm5.61 693 |
. . . . 5
⊢ (((x ∈ A ∨ x = B) ∧ ¬ x =
B) ↔ (x ∈ A ∧ ¬ x = B)) |
9 | 1, 7, 8 | 3bitri 262 |
. . . 4
⊢ (x ∈ ((A ∪ {B})
∖ {B})
↔ (x ∈ A ∧ ¬ x =
B)) |
10 | | ancom 437 |
. . . 4
⊢ ((x ∈ A ∧ ¬ x = B) ↔
(¬ x = B ∧ x ∈ A)) |
11 | 9, 10 | bitri 240 |
. . 3
⊢ (x ∈ ((A ∪ {B})
∖ {B})
↔ (¬ x = B ∧ x ∈ A)) |
12 | | eleq1 2413 |
. . . . . . . 8
⊢ (x = B →
(x ∈
A ↔ B ∈ A)) |
13 | 12 | biimpcd 215 |
. . . . . . 7
⊢ (x ∈ A → (x =
B → B ∈ A)) |
14 | 13 | con3d 125 |
. . . . . 6
⊢ (x ∈ A → (¬ B ∈ A → ¬ x
= B)) |
15 | 14 | com12 27 |
. . . . 5
⊢ (¬ B ∈ A → (x
∈ A
→ ¬ x = B)) |
16 | 15 | pm4.71rd 616 |
. . . 4
⊢ (¬ B ∈ A → (x
∈ A
↔ (¬ x = B ∧ x ∈ A))) |
17 | 16 | bicomd 192 |
. . 3
⊢ (¬ B ∈ A → ((¬ x = B ∧ x ∈ A) ↔
x ∈
A)) |
18 | 11, 17 | syl5bb 248 |
. 2
⊢ (¬ B ∈ A → (x
∈ ((A
∪ {B}) ∖ {B}) ↔
x ∈
A)) |
19 | 18 | eqrdv 2351 |
1
⊢ (¬ B ∈ A → ((A
∪ {B}) ∖ {B}) =
A) |