Proof of Theorem 2mos
Step | Hyp | Ref
| Expression |
1 | | 2mo 2282 |
. 2
⊢ (∃z∃w∀x∀y(φ → (x = z ∧ y = w)) ↔ ∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w))) |
2 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎxψ |
3 | | nfv 1619 |
. . . . . . . . . 10
⊢ Ⅎy x = z |
4 | 3 | sbrim 2067 |
. . . . . . . . 9
⊢ ([w / y](x = z →
φ) ↔ (x = z →
[w / y]φ)) |
5 | | nfv 1619 |
. . . . . . . . . 10
⊢ Ⅎy(x = z → ψ) |
6 | | 2mos.1 |
. . . . . . . . . . . 12
⊢ ((x = z ∧ y = w) → (φ
↔ ψ)) |
7 | 6 | expcom 424 |
. . . . . . . . . . 11
⊢ (y = w →
(x = z
→ (φ ↔ ψ))) |
8 | 7 | pm5.74d 238 |
. . . . . . . . . 10
⊢ (y = w →
((x = z
→ φ) ↔ (x = z →
ψ))) |
9 | 5, 8 | sbie 2038 |
. . . . . . . . 9
⊢ ([w / y](x = z →
φ) ↔ (x = z →
ψ)) |
10 | 4, 9 | bitr3i 242 |
. . . . . . . 8
⊢ ((x = z →
[w / y]φ) ↔
(x = z
→ ψ)) |
11 | 10 | pm5.74ri 237 |
. . . . . . 7
⊢ (x = z →
([w / y]φ ↔
ψ)) |
12 | 2, 11 | sbie 2038 |
. . . . . 6
⊢ ([z / x][w / y]φ ↔ ψ) |
13 | 12 | anbi2i 675 |
. . . . 5
⊢ ((φ ∧
[z / x][w / y]φ) ↔
(φ ∧
ψ)) |
14 | 13 | imbi1i 315 |
. . . 4
⊢ (((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) ↔ ((φ ∧ ψ) → (x = z ∧ y = w))) |
15 | 14 | 2albii 1567 |
. . 3
⊢ (∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) ↔ ∀z∀w((φ ∧ ψ) → (x = z ∧ y = w))) |
16 | 15 | 2albii 1567 |
. 2
⊢ (∀x∀y∀z∀w((φ ∧
[z / x][w / y]φ) →
(x = z
∧ y =
w)) ↔ ∀x∀y∀z∀w((φ ∧ ψ) → (x = z ∧ y = w))) |
17 | 1, 16 | bitri 240 |
1
⊢ (∃z∃w∀x∀y(φ → (x = z ∧ y = w)) ↔ ∀x∀y∀z∀w((φ ∧ ψ) → (x = z ∧ y = w))) |