| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > r19.27av | GIF version | ||
| Description: Restricted version of one direction of Theorem 19.27 of [Margaris] p. 90. (The other direction doesn't hold when A is empty.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) | 
| Ref | Expression | 
|---|---|
| r19.27av | ⊢ ((∀x ∈ A φ ∧ ψ) → ∀x ∈ A (φ ∧ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1 6 | . . . 4 ⊢ (ψ → (x ∈ A → ψ)) | |
| 2 | 1 | ralrimiv 2697 | . . 3 ⊢ (ψ → ∀x ∈ A ψ) | 
| 3 | 2 | anim2i 552 | . 2 ⊢ ((∀x ∈ A φ ∧ ψ) → (∀x ∈ A φ ∧ ∀x ∈ A ψ)) | 
| 4 | r19.26 2747 | . 2 ⊢ (∀x ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ)) | |
| 5 | 3, 4 | sylibr 203 | 1 ⊢ ((∀x ∈ A φ ∧ ψ) → ∀x ∈ A (φ ∧ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 | 
| This theorem is referenced by: r19.28av 2754 | 
| Copyright terms: Public domain | W3C validator |