New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralbiim | GIF version |
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
ralbiim | ⊢ (∀x ∈ A (φ ↔ ψ) ↔ (∀x ∈ A (φ → ψ) ∧ ∀x ∈ A (ψ → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 609 | . . 3 ⊢ ((φ ↔ ψ) ↔ ((φ → ψ) ∧ (ψ → φ))) | |
2 | 1 | ralbii 2638 | . 2 ⊢ (∀x ∈ A (φ ↔ ψ) ↔ ∀x ∈ A ((φ → ψ) ∧ (ψ → φ))) |
3 | r19.26 2746 | . 2 ⊢ (∀x ∈ A ((φ → ψ) ∧ (ψ → φ)) ↔ (∀x ∈ A (φ → ψ) ∧ ∀x ∈ A (ψ → φ))) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (∀x ∈ A (φ ↔ ψ) ↔ (∀x ∈ A (φ → ψ) ∧ ∀x ∈ A (ψ → φ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wral 2614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2619 |
This theorem is referenced by: eqreu 3028 ssofeq 4077 |
Copyright terms: Public domain | W3C validator |