NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.40 GIF version

Theorem r19.40 2762
Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.40 (x A (φ ψ) → (x A φ x A ψ))

Proof of Theorem r19.40
StepHypRef Expression
1 simpl 443 . . 3 ((φ ψ) → φ)
21reximi 2721 . 2 (x A (φ ψ) → x A φ)
3 simpr 447 . . 3 ((φ ψ) → ψ)
43reximi 2721 . 2 (x A (φ ψ) → x A ψ)
52, 4jca 518 1 (x A (φ ψ) → (x A φ x A ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wrex 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2619  df-rex 2620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator