NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.37av GIF version

Theorem r19.37av 2761
Description: Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. (The other direction doesn't hold when A is empty.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.37av (x A (φψ) → (φx A ψ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   A(x)

Proof of Theorem r19.37av
StepHypRef Expression
1 nfv 1619 . 2 xφ
21r19.37 2760 1 (x A (φψ) → (φx A ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-ral 2619  df-rex 2620
This theorem is referenced by:  ssiun  4008
  Copyright terms: Public domain W3C validator