New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabswap | GIF version |
Description: Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.) |
Ref | Expression |
---|---|
rabswap | ⊢ {x ∈ A ∣ x ∈ B} = {x ∈ B ∣ x ∈ A} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . . 3 ⊢ ((x ∈ A ∧ x ∈ B) ↔ (x ∈ B ∧ x ∈ A)) | |
2 | 1 | abbii 2465 | . 2 ⊢ {x ∣ (x ∈ A ∧ x ∈ B)} = {x ∣ (x ∈ B ∧ x ∈ A)} |
3 | df-rab 2623 | . 2 ⊢ {x ∈ A ∣ x ∈ B} = {x ∣ (x ∈ A ∧ x ∈ B)} | |
4 | df-rab 2623 | . 2 ⊢ {x ∈ B ∣ x ∈ A} = {x ∣ (x ∈ B ∧ x ∈ A)} | |
5 | 2, 3, 4 | 3eqtr4i 2383 | 1 ⊢ {x ∈ A ∣ x ∈ B} = {x ∈ B ∣ x ∈ A} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-rab 2623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |