New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-rab | GIF version |
Description: Define a restricted class abstraction (class builder), which is the class of all x in A such that φ is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-rab | ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | vx | . . 3 setvar x | |
3 | cA | . . 3 class A | |
4 | 1, 2, 3 | crab 2619 | . 2 class {x ∈ A ∣ φ} |
5 | 2 | cv 1641 | . . . . 5 class x |
6 | 5, 3 | wcel 1710 | . . . 4 wff x ∈ A |
7 | 6, 1 | wa 358 | . . 3 wff (x ∈ A ∧ φ) |
8 | 7, 2 | cab 2339 | . 2 class {x ∣ (x ∈ A ∧ φ)} |
9 | 4, 8 | wceq 1642 | 1 wff {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} |
Colors of variables: wff setvar class |
This definition is referenced by: rabid 2788 rabid2 2789 rabbi 2790 rabswap 2791 nfrab1 2792 nfrab 2793 rabbiia 2850 rabeqf 2853 cbvrab 2858 rabab 2877 elrabf 2994 ralrab2 3003 rexrab2 3005 cbvrabcsf 3202 dfdif2 3223 ss2rab 3343 rabss 3344 ssrab 3345 rabss2 3350 ssrab2 3352 rabssab 3353 rabbi2dva 3464 notab 3526 unrab 3527 inrab 3528 inrab2 3529 difrab 3530 dfrab2 3531 dfrab3 3532 notrab 3533 rabun2 3535 dfnul3 3554 rabn0 3571 rab0 3572 dfif6 3666 rabsn 3791 reusn 3794 rabsneu 3796 elunirab 3905 elintrab 3939 ssintrab 3950 iunrab 4014 iinrab 4029 reiotacl2 4364 opeq 4620 rabxp 4815 mptpreima 5683 dmmpt 5684 frds 5936 fnpm 6009 pmvalg 6011 mapsspm 6022 dmsnfn 6328 |
Copyright terms: Public domain | W3C validator |