![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > df-rab | GIF version |
Description: Define a restricted class abstraction (class builder), which is the class of all x in A such that φ is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-rab | ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | vx | . . 3 setvar x | |
3 | cA | . . 3 class A | |
4 | 1, 2, 3 | crab 2618 | . 2 class {x ∈ A ∣ φ} |
5 | 2 | cv 1641 | . . . . 5 class x |
6 | 5, 3 | wcel 1710 | . . . 4 wff x ∈ A |
7 | 6, 1 | wa 358 | . . 3 wff (x ∈ A ∧ φ) |
8 | 7, 2 | cab 2339 | . 2 class {x ∣ (x ∈ A ∧ φ)} |
9 | 4, 8 | wceq 1642 | 1 wff {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} |
Colors of variables: wff setvar class |
This definition is referenced by: rabid 2787 rabid2 2788 rabbi 2789 rabswap 2790 nfrab1 2791 nfrab 2792 rabbiia 2849 rabeqf 2852 cbvrab 2857 rabab 2876 elrabf 2993 ralrab2 3002 rexrab2 3004 cbvrabcsf 3201 dfdif2 3222 ss2rab 3342 rabss 3343 ssrab 3344 rabss2 3349 ssrab2 3351 rabssab 3352 rabbi2dva 3463 notab 3525 unrab 3526 inrab 3527 inrab2 3528 difrab 3529 dfrab2 3530 dfrab3 3531 notrab 3532 rabun2 3534 dfnul3 3553 rabn0 3570 rab0 3571 dfif6 3665 rabsn 3790 reusn 3793 rabsneu 3795 elunirab 3904 elintrab 3938 ssintrab 3949 iunrab 4013 iinrab 4028 reiotacl2 4363 opeq 4619 rabxp 4814 mptpreima 5682 dmmpt 5683 frds 5935 fnpm 6008 pmvalg 6010 mapsspm 6021 dmsnfn 6327 |
Copyright terms: Public domain | W3C validator |