![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fnres | GIF version |
Description: An equivalence for functionality of a restriction. Compare dffun8 5135. (Contributed by Mario Carneiro, 20-May-2015.) |
Ref | Expression |
---|---|
fnres | ⊢ ((F ↾ A) Fn A ↔ ∀x ∈ A ∃!y xFy) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . . 3 ⊢ ((∀x ∈ A ∃*y xFy ∧ ∀x ∈ A ∃y xFy) ↔ (∀x ∈ A ∃y xFy ∧ ∀x ∈ A ∃*y xFy)) | |
2 | brres 4950 | . . . . . . . . 9 ⊢ (x(F ↾ A)y ↔ (xFy ∧ x ∈ A)) | |
3 | ancom 437 | . . . . . . . . 9 ⊢ ((xFy ∧ x ∈ A) ↔ (x ∈ A ∧ xFy)) | |
4 | 2, 3 | bitri 240 | . . . . . . . 8 ⊢ (x(F ↾ A)y ↔ (x ∈ A ∧ xFy)) |
5 | 4 | mobii 2240 | . . . . . . 7 ⊢ (∃*y x(F ↾ A)y ↔ ∃*y(x ∈ A ∧ xFy)) |
6 | moanimv 2262 | . . . . . . 7 ⊢ (∃*y(x ∈ A ∧ xFy) ↔ (x ∈ A → ∃*y xFy)) | |
7 | 5, 6 | bitri 240 | . . . . . 6 ⊢ (∃*y x(F ↾ A)y ↔ (x ∈ A → ∃*y xFy)) |
8 | 7 | albii 1566 | . . . . 5 ⊢ (∀x∃*y x(F ↾ A)y ↔ ∀x(x ∈ A → ∃*y xFy)) |
9 | dffun6 5125 | . . . . 5 ⊢ (Fun (F ↾ A) ↔ ∀x∃*y x(F ↾ A)y) | |
10 | df-ral 2620 | . . . . 5 ⊢ (∀x ∈ A ∃*y xFy ↔ ∀x(x ∈ A → ∃*y xFy)) | |
11 | 8, 9, 10 | 3bitr4i 268 | . . . 4 ⊢ (Fun (F ↾ A) ↔ ∀x ∈ A ∃*y xFy) |
12 | dmres 4987 | . . . . . . 7 ⊢ dom (F ↾ A) = (A ∩ dom F) | |
13 | inss1 3476 | . . . . . . 7 ⊢ (A ∩ dom F) ⊆ A | |
14 | 12, 13 | eqsstri 3302 | . . . . . 6 ⊢ dom (F ↾ A) ⊆ A |
15 | eqss 3288 | . . . . . 6 ⊢ (dom (F ↾ A) = A ↔ (dom (F ↾ A) ⊆ A ∧ A ⊆ dom (F ↾ A))) | |
16 | 14, 15 | mpbiran 884 | . . . . 5 ⊢ (dom (F ↾ A) = A ↔ A ⊆ dom (F ↾ A)) |
17 | dfss3 3264 | . . . . 5 ⊢ (A ⊆ dom (F ↾ A) ↔ ∀x ∈ A x ∈ dom (F ↾ A)) | |
18 | 12 | elin2 3447 | . . . . . . . 8 ⊢ (x ∈ dom (F ↾ A) ↔ (x ∈ A ∧ x ∈ dom F)) |
19 | 18 | baib 871 | . . . . . . 7 ⊢ (x ∈ A → (x ∈ dom (F ↾ A) ↔ x ∈ dom F)) |
20 | eldm 4899 | . . . . . . 7 ⊢ (x ∈ dom F ↔ ∃y xFy) | |
21 | 19, 20 | syl6bb 252 | . . . . . 6 ⊢ (x ∈ A → (x ∈ dom (F ↾ A) ↔ ∃y xFy)) |
22 | 21 | ralbiia 2647 | . . . . 5 ⊢ (∀x ∈ A x ∈ dom (F ↾ A) ↔ ∀x ∈ A ∃y xFy) |
23 | 16, 17, 22 | 3bitri 262 | . . . 4 ⊢ (dom (F ↾ A) = A ↔ ∀x ∈ A ∃y xFy) |
24 | 11, 23 | anbi12i 678 | . . 3 ⊢ ((Fun (F ↾ A) ∧ dom (F ↾ A) = A) ↔ (∀x ∈ A ∃*y xFy ∧ ∀x ∈ A ∃y xFy)) |
25 | r19.26 2747 | . . 3 ⊢ (∀x ∈ A (∃y xFy ∧ ∃*y xFy) ↔ (∀x ∈ A ∃y xFy ∧ ∀x ∈ A ∃*y xFy)) | |
26 | 1, 24, 25 | 3bitr4i 268 | . 2 ⊢ ((Fun (F ↾ A) ∧ dom (F ↾ A) = A) ↔ ∀x ∈ A (∃y xFy ∧ ∃*y xFy)) |
27 | df-fn 4791 | . 2 ⊢ ((F ↾ A) Fn A ↔ (Fun (F ↾ A) ∧ dom (F ↾ A) = A)) | |
28 | eu5 2242 | . . 3 ⊢ (∃!y xFy ↔ (∃y xFy ∧ ∃*y xFy)) | |
29 | 28 | ralbii 2639 | . 2 ⊢ (∀x ∈ A ∃!y xFy ↔ ∀x ∈ A (∃y xFy ∧ ∃*y xFy)) |
30 | 26, 27, 29 | 3bitr4i 268 | 1 ⊢ ((F ↾ A) Fn A ↔ ∀x ∈ A ∃!y xFy) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 ∃*wmo 2205 ∀wral 2615 ∩ cin 3209 ⊆ wss 3258 class class class wbr 4640 dom cdm 4773 ↾ cres 4775 Fun wfun 4776 Fn wfn 4777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |