Proof of Theorem fnres
Step | Hyp | Ref
| Expression |
1 | | ancom 437 |
. . 3
⊢ ((∀x ∈ A ∃*y xFy ∧ ∀x ∈ A ∃y xFy) ↔ (∀x ∈ A ∃y xFy ∧ ∀x ∈ A ∃*y xFy)) |
2 | | brres 4950 |
. . . . . . . . 9
⊢ (x(F ↾ A)y ↔ (xFy ∧ x ∈ A)) |
3 | | ancom 437 |
. . . . . . . . 9
⊢ ((xFy ∧ x ∈ A) ↔ (x
∈ A ∧ xFy)) |
4 | 2, 3 | bitri 240 |
. . . . . . . 8
⊢ (x(F ↾ A)y ↔ (x
∈ A ∧ xFy)) |
5 | 4 | mobii 2240 |
. . . . . . 7
⊢ (∃*y x(F ↾ A)y ↔ ∃*y(x ∈ A ∧ xFy)) |
6 | | moanimv 2262 |
. . . . . . 7
⊢ (∃*y(x ∈ A ∧ xFy) ↔ (x
∈ A
→ ∃*y xFy)) |
7 | 5, 6 | bitri 240 |
. . . . . 6
⊢ (∃*y x(F ↾ A)y ↔ (x
∈ A
→ ∃*y xFy)) |
8 | 7 | albii 1566 |
. . . . 5
⊢ (∀x∃*y x(F ↾ A)y ↔ ∀x(x ∈ A → ∃*y xFy)) |
9 | | dffun6 5125 |
. . . . 5
⊢ (Fun (F ↾ A) ↔ ∀x∃*y x(F ↾ A)y) |
10 | | df-ral 2620 |
. . . . 5
⊢ (∀x ∈ A ∃*y xFy ↔ ∀x(x ∈ A → ∃*y xFy)) |
11 | 8, 9, 10 | 3bitr4i 268 |
. . . 4
⊢ (Fun (F ↾ A) ↔ ∀x ∈ A ∃*y xFy) |
12 | | dmres 4987 |
. . . . . . 7
⊢ dom (F ↾ A) = (A ∩
dom F) |
13 | | inss1 3476 |
. . . . . . 7
⊢ (A ∩ dom F)
⊆ A |
14 | 12, 13 | eqsstri 3302 |
. . . . . 6
⊢ dom (F ↾ A) ⊆ A |
15 | | eqss 3288 |
. . . . . 6
⊢ (dom (F ↾ A) = A ↔
(dom (F ↾ A) ⊆ A ∧ A ⊆ dom (F ↾ A))) |
16 | 14, 15 | mpbiran 884 |
. . . . 5
⊢ (dom (F ↾ A) = A ↔
A ⊆ dom
(F ↾
A)) |
17 | | dfss3 3264 |
. . . . 5
⊢ (A ⊆ dom (F ↾ A) ↔ ∀x ∈ A x ∈ dom (F ↾ A)) |
18 | 12 | elin2 3447 |
. . . . . . . 8
⊢ (x ∈ dom (F ↾ A) ↔ (x
∈ A ∧ x ∈ dom F)) |
19 | 18 | baib 871 |
. . . . . . 7
⊢ (x ∈ A → (x
∈ dom (F
↾ A)
↔ x ∈ dom F)) |
20 | | eldm 4899 |
. . . . . . 7
⊢ (x ∈ dom F ↔ ∃y xFy) |
21 | 19, 20 | syl6bb 252 |
. . . . . 6
⊢ (x ∈ A → (x
∈ dom (F
↾ A)
↔ ∃y xFy)) |
22 | 21 | ralbiia 2647 |
. . . . 5
⊢ (∀x ∈ A x ∈ dom (F ↾ A) ↔ ∀x ∈ A ∃y xFy) |
23 | 16, 17, 22 | 3bitri 262 |
. . . 4
⊢ (dom (F ↾ A) = A ↔
∀x
∈ A ∃y xFy) |
24 | 11, 23 | anbi12i 678 |
. . 3
⊢ ((Fun (F ↾ A) ∧ dom (F ↾ A) = A) ↔
(∀x
∈ A ∃*y xFy ∧ ∀x ∈ A ∃y xFy)) |
25 | | r19.26 2747 |
. . 3
⊢ (∀x ∈ A (∃y xFy ∧ ∃*y xFy) ↔ (∀x ∈ A ∃y xFy ∧ ∀x ∈ A ∃*y xFy)) |
26 | 1, 24, 25 | 3bitr4i 268 |
. 2
⊢ ((Fun (F ↾ A) ∧ dom (F ↾ A) = A) ↔
∀x
∈ A
(∃y
xFy ∧ ∃*y xFy)) |
27 | | df-fn 4791 |
. 2
⊢ ((F ↾ A) Fn A ↔
(Fun (F ↾ A) ∧ dom (F ↾ A) =
A)) |
28 | | eu5 2242 |
. . 3
⊢ (∃!y xFy ↔ (∃y xFy ∧ ∃*y xFy)) |
29 | 28 | ralbii 2639 |
. 2
⊢ (∀x ∈ A ∃!y xFy ↔ ∀x ∈ A (∃y xFy ∧ ∃*y xFy)) |
30 | 26, 27, 29 | 3bitr4i 268 |
1
⊢ ((F ↾ A) Fn A ↔
∀x
∈ A ∃!y xFy) |