NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fncnv GIF version

Theorem fncnv 5159
Description: Single-rootedness (see funcnv 5157) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv ((R ∩ (A × B)) Fn By B ∃!x A xRy)
Distinct variable groups:   x,y,A   x,B,y   x,R,y

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 4791 . 2 ((R ∩ (A × B)) Fn B ↔ (Fun (R ∩ (A × B)) dom (R ∩ (A × B)) = B))
2 dfrn4 4905 . . . 4 ran (R ∩ (A × B)) = dom (R ∩ (A × B))
32eqeq1i 2360 . . 3 (ran (R ∩ (A × B)) = B ↔ dom (R ∩ (A × B)) = B)
43anbi2i 675 . 2 ((Fun (R ∩ (A × B)) ran (R ∩ (A × B)) = B) ↔ (Fun (R ∩ (A × B)) dom (R ∩ (A × B)) = B))
5 rninxp 5061 . . . . 5 (ran (R ∩ (A × B)) = By B x A xRy)
65anbi1i 676 . . . 4 ((ran (R ∩ (A × B)) = B y B ∃*x A xRy) ↔ (y B x A xRy y B ∃*x A xRy))
7 funcnv 5157 . . . . . 6 (Fun (R ∩ (A × B)) ↔ y ran (R ∩ (A × B))∃*x x(R ∩ (A × B))y)
8 raleq 2808 . . . . . . 7 (ran (R ∩ (A × B)) = B → (y ran (R ∩ (A × B))∃*x x(R ∩ (A × B))yy B ∃*x x(R ∩ (A × B))y))
9 biimt 325 . . . . . . . . 9 (y B → (∃*x A xRy ↔ (y B∃*x A xRy)))
10 moanimv 2262 . . . . . . . . . 10 (∃*x(y B (x A xRy)) ↔ (y B∃*x(x A xRy)))
11 brin 4694 . . . . . . . . . . . 12 (x(R ∩ (A × B))y ↔ (xRy x(A × B)y))
12 brxp 4813 . . . . . . . . . . . . . . . 16 (x(A × B)y ↔ (x A y B))
13 ancom 437 . . . . . . . . . . . . . . . 16 ((x A y B) ↔ (y B x A))
1412, 13bitri 240 . . . . . . . . . . . . . . 15 (x(A × B)y ↔ (y B x A))
1514anbi2i 675 . . . . . . . . . . . . . 14 ((xRy x(A × B)y) ↔ (xRy (y B x A)))
16 ancom 437 . . . . . . . . . . . . . 14 ((xRy (y B x A)) ↔ ((y B x A) xRy))
1715, 16bitri 240 . . . . . . . . . . . . 13 ((xRy x(A × B)y) ↔ ((y B x A) xRy))
18 anass 630 . . . . . . . . . . . . 13 (((y B x A) xRy) ↔ (y B (x A xRy)))
1917, 18bitri 240 . . . . . . . . . . . 12 ((xRy x(A × B)y) ↔ (y B (x A xRy)))
2011, 19bitri 240 . . . . . . . . . . 11 (x(R ∩ (A × B))y ↔ (y B (x A xRy)))
2120mobii 2240 . . . . . . . . . 10 (∃*x x(R ∩ (A × B))y∃*x(y B (x A xRy)))
22 df-rmo 2623 . . . . . . . . . . 11 (∃*x A xRy∃*x(x A xRy))
2322imbi2i 303 . . . . . . . . . 10 ((y B∃*x A xRy) ↔ (y B∃*x(x A xRy)))
2410, 21, 233bitr4i 268 . . . . . . . . 9 (∃*x x(R ∩ (A × B))y ↔ (y B∃*x A xRy))
259, 24syl6rbbr 255 . . . . . . . 8 (y B → (∃*x x(R ∩ (A × B))y∃*x A xRy))
2625ralbiia 2647 . . . . . . 7 (y B ∃*x x(R ∩ (A × B))yy B ∃*x A xRy)
278, 26syl6bb 252 . . . . . 6 (ran (R ∩ (A × B)) = B → (y ran (R ∩ (A × B))∃*x x(R ∩ (A × B))yy B ∃*x A xRy))
287, 27syl5bb 248 . . . . 5 (ran (R ∩ (A × B)) = B → (Fun (R ∩ (A × B)) ↔ y B ∃*x A xRy))
2928pm5.32i 618 . . . 4 ((ran (R ∩ (A × B)) = B Fun (R ∩ (A × B))) ↔ (ran (R ∩ (A × B)) = B y B ∃*x A xRy))
30 r19.26 2747 . . . 4 (y B (x A xRy ∃*x A xRy) ↔ (y B x A xRy y B ∃*x A xRy))
316, 29, 303bitr4i 268 . . 3 ((ran (R ∩ (A × B)) = B Fun (R ∩ (A × B))) ↔ y B (x A xRy ∃*x A xRy))
32 ancom 437 . . 3 ((Fun (R ∩ (A × B)) ran (R ∩ (A × B)) = B) ↔ (ran (R ∩ (A × B)) = B Fun (R ∩ (A × B))))
33 reu5 2825 . . . 4 (∃!x A xRy ↔ (x A xRy ∃*x A xRy))
3433ralbii 2639 . . 3 (y B ∃!x A xRyy B (x A xRy ∃*x A xRy))
3531, 32, 343bitr4i 268 . 2 ((Fun (R ∩ (A × B)) ran (R ∩ (A × B)) = B) ↔ y B ∃!x A xRy)
361, 4, 353bitr2i 264 1 ((R ∩ (A × B)) Fn By B ∃!x A xRy)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  ∃*wmo 2205  wral 2615  wrex 2616  ∃!wreu 2617  ∃*wrmo 2618  cin 3209   class class class wbr 4640   × cxp 4771  ccnv 4772  dom cdm 4773  ran crn 4774  Fun wfun 4776   Fn wfn 4777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator