New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralimdva GIF version

Theorem ralimdva 2692
 Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
ralimdva.1 ((φ x A) → (ψχ))
Assertion
Ref Expression
ralimdva (φ → (x A ψx A χ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   χ(x)   A(x)

Proof of Theorem ralimdva
StepHypRef Expression
1 nfv 1619 . 2 xφ
2 ralimdva.1 . 2 ((φ x A) → (ψχ))
31, 2ralimdaa 2691 1 (φ → (x A ψx A χ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358   ∈ wcel 1710  ∀wral 2614 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2619 This theorem is referenced by:  ralimdv  2693  weds  5938  nclenn  6249  spacind  6287
 Copyright terms: Public domain W3C validator